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Abstract

Brownian motions on coalescent structures have a biological relevance, either as an approximation of the stepwise mutation

model for microsatellites, or as a model of spatial evolution considering the locations of individuals at successive generations. We

discuss estimation procedures for the dispersal parameter of a Brownian motion defined on coalescent trees. First, we consider the

mean square distance unbiased estimator and compute its variance. In a second approach, we introduce a phylogenetic estimator.

Given the UPGMA topology, the likelihood of the parameter is computed thanks to a new dynamical programming method. By a

proper correction, an unbiased estimator is derived from the pseudomaximum of the likelihood. The last approach consists of

computing the likelihood by a Markov chain Monte Carlo sampling method. In the one-dimensional Brownian motion, this method

seems less reliable than pseudomaximum-likelihood.

r 2004 Elsevier Inc. All rights reserved.
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1. Introduction

In this article we discuss estimation procedures for the
parameter of a Brownian motion model defined on
coalescent trees. Let us consider n random variables X1;
X2;y;Xn; resulting at the tips of a binary rooted tree
from one-dimensional Brownian random walks on the
branches of this tree. We assume that the trees are
randomly sampled according to Kingman’s model of
coalescence (Kingman, 1982). Therefore, branch length
corresponds to the time elapsed since the divergence of
lineages in a neutral evolution. The random walk starts
at the root of the tree, and splits into independent copies
when it goes through a node. We assume that the two
copies are conditionally independent given the common
value at the split node. The second-order structure of
Brownian motions ðBtÞ is specified as follows:

E½B2t � ¼ yt; t40

for some parameter y40 which is the object of the
estimation procedures.
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Brownian motion on coalescent trees were introduced
as an approximation to the ladder model of micro-
satellite evolution and then implemented in a computer
program by Beerli (2002). This approximation replaces
the discrete stepwise mutation model of Kimura and
Otha (1972) with a continuous model, and assumes that
the changes in microsatellite length could be approxi-
mated by a Gaussian distribution. The approximation
proved useful in the context of Markov chain Monte
Carlo methods, because computations could be made
many times faster. Beerli (2002) reported that it
appeared to work well except when genealogies have
very short branches (and gave the example of those
associated with very small population sizes) on which it
showed a significant upward bias.
Random walks were also introduced in the context of

models of isolation by distance in continuous popula-
tions (Wright, 1943; Malécot, 1967) where spatial
dispersal is often localized in space. This approach
includes a parameter s2 that represents the rate of
dispersal, i.e., the averaged squared distance between
parents and offspring. Many theoretical attempts have
been made in order to describe levels of genetic
differentiation in terms of this parameter (e.g., Cox
and Durrett, 2002). However these analyses often relied
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upon a discrete model, namely the stepping stone model
of Kimura (1953). Parameter estimation methods based
on the stepping stone model are discussed by Rousset
(2003). Here we reexamine the inference problem from
another point of view. We base parameter estimation on
the separation of the spatial data (i.e., the locations of
individuals) and the genetic data, considering the spatial
data as non-genetic inherited characters. More specifi-
cally, Brownian motions on coalescent trees are
regarded as a model for the evolution of spatial data
in a large one-dimensional habitat modulo a correct
rescaling of time. In fact, our approach involves the
estimation of the product of the spatial dispersal rate s2

times the effective population size Ne

y ¼ s2Ne:

Hence, we base the estimation of y on spatial data only.
Nevertheless, estimating s2 yet requires genetic data
because these data are usually necessary for estimating
the effective population size Ne (Beaumont, 2003).
The paper is structured as follows. At the beginning of

Section 2, we present the basic assumptions on which
our model is based. At the end of Section 2, we describe
Brownian motion on coalescent trees as the limit of
discrete stepwise models on such genealogies. Two kinds
of estimation methods are studied: the first based on a
pairwise statistic (Section 3) and the others based on
likelihoods (Section 4). Both are relevant to traditional
approaches in statistical genetics. Estimation based on
likelihoods is the most recent approach, and warrants
optimal properties of estimators for large sample sizes.
In our context, computing likelihood is a difficult issue
because this function is expressed as a high-dimensional
integral

LðyÞ ¼
Z

pðDjGÞpðGjyÞ dG; ð1Þ

where pðD=GÞ is the conditional distribution of the data
given the genealogy of the sample G; and pðG=yÞ is the
distribution of such genealogies (see Stephens, 2003).
The summation over all possible genealogies cannot be
performed analytically unless the sample size remains
very small. Section 4.2 presents a fast computational
method for estimating y from a pseudomaximum-
likelihood approximation. Section 4.4 deals with Mar-
kov chain Monte Carlo approximations.
2. Models

2.1. Coalescent trees

Kingman’s coalescent genealogies (Kingman, 1982)
are large-size limits of genealogies under the assumption
that populations reproduce according to an idealized
neutral Wright–Fisher model. Given a sample of n
individuals, the ancestral process can be defined as a
continuous-time Markov chain for which the jumps
correspond to the times of coalescence of ancestral
lineages. Let Tn�1 be the time since the most recent
common ancestor (MRCA) in the sample, Tn�2 the time
since two distinct ancestors in the sample, T0 ¼ 0:
Kingman’s theory states that the durations separating
coalescence events Zk ¼ Tn�kþ1 � Tn�k; k ¼ 2;y; n;
are independent exponentially distributed random vari-
ables of rates lk ¼ kðk � 1Þ=2: Under the assumption
that time is measured in units of Ne generations, the
probability distribution of genealogies G can be
described as

pðGÞ ¼
Yn

k¼2
expð�lkzkÞ: ð2Þ

An alternative way of measuring time is by rescaling as
follows:

t 	 yt

for some y40: Under this transformation, the distribu-
tion of genealogies depends on the parameter y as
follows:

pðGjyÞ ¼ 1

yn�1 exp �
Xn

k¼2
lk

zk

y

 !
: ð3Þ

According to Felsenstein et al. (1999), the approxima-
tion of discrete genealogies is valid when n25Ne; and
was observed as being extraordinary accurate in
practice.

2.2. Random walks

The model of Kimura and Otha (1972) is a random
walk model that has been applied to the evolution of
microsatellites. Microsatellites are genetic markers
where a given motif of DNA is repeated several times.
These data are particularly useful for population
genetics studies as they are abundant and widely
dispersed in eukaryotic genomes, and have high muta-
tion rates. The number of repetitions is called the length
of the microsatellite.
In the discrete ladder model of Kimura and Otha, the

population at generation c consists of Ne diploid
individuals. At generation cþ 1; Ne offspring are
created by sampling with replacement from the parental
population and the parent allele can mutate with
probability m: Mutations randomly decrease or increase
the length of the sequence. It is standard practice to set
y ¼ 4Nem: However, we use the notation that y ¼ 2Nem
in order to obtain results homogenous with the spatial
applications of Brownian motions. In the large-size
limit, mutations occur according to independent Poisson
processes of rate y on each branch of the genealogy.
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In a spatial model, we consider a haploid population.
Each individual gives birth to a Poisson random number
of offspring at rate l40: Conditional to the fact that the
population size is constant, this description is indepen-
dent of l; and equivalent to the Wright–Fisher haploid
neutral model (Tavaré, 2001). We assume that the
offspring locations are random independent variables
centered around the parent location with a variance
equal to s2: Whatever the genetic structure of the
population, spatial data are therefore inherited in the
same way that neutral markers could be. However, the
term neutral is misleading as far as spatial locations are
concerned. In this context, this term merely indicates
the absence of density regulation. The important
property is that coalescent approximation apply to this
framework.
With time t measured in units of Ne generations,

we set

c ¼ INetm:

The displacement of the offspring from an ancestor c
generations ago is

Xt ¼ x1 þ?þ xINetm;

where xi corresponds to the displacement of the
offspring from the parent in a single generation. In this
situation, we take

y ¼ s2Ne;

and Xt has expectation E½Xt� ¼ 0 and variance
Var½Xt� ¼ yt: Considering the change of variable t 	 yt

will be useful in likelihood computations. Under this
transformation, the spatial diffusion rescales to the
standard Brownian process independent of y: This
change of variable is only used in Section 4.

2.3. Brownian motion as an approximate model of

stepwise mutation

In this section, we present informal arguments that
motivate the use of Brownian models as limits of
stepwise mutation models. We refer the reader to
Appendix A for a more rigorous proof that Brownian
models arise as the limit of sequences of compound
Poisson processes which include the ladder model. Beerli
(2002) reports that this kind of approximation breaks
down when the effective population size is small (yo5).
The stepwise mutation process is usually defined as

follows. Let ðMtÞ count the number of mutations of the
sequence before the time t:Mathematically, this process
is defined as a homogeneous Poisson process of rate
y40: The length variation of microsatellite markers at
time t is given by

X 1t ¼
XMt

i¼1
xi;
where the xi are independent identically distributed
discrete random variables such that

E½xi� ¼ 0;

and

Var½xi� ¼ n2; n40:

The basic idea that underpins the Brownian approxima-
tion is that the process ðX 1t Þ has the same covariance
structure as the Brownian motion ðBtÞ: A classical
example of the stepwise mutation model is the sym-
metric random walk model

Pðxi ¼ 1Þ ¼ Pðxi ¼ �1Þ ¼ 1
2

for which n ¼ 1: For this model, let sot; and compute

kðs; tÞ ¼ covðX 1s ;X 1t Þ ¼ E
XMs

i¼1
xi

XMt

j¼1
xj

" #
:

Using the fact that the Poisson process has independent
increments, we obtain that

kðs; tÞ ¼ E
XMs

i¼1
xi

 !22
4

3
5þ E

XMs

i¼1
xi

" #
E

XMt�Ms

j¼Msþ1
xj

" #
;

and

kðs; tÞ ¼ E½Ms� ¼ ys:

For large t; Mt is equivalent to yt almost surely.
According to the Central Limit Theorem, X 1t behaves
as a Gaussian random variable Nð0; ytÞ: In addition,
we have

covðBs;BtÞ ¼ yminðs; tÞ:

Since Bt is a Gaussian process, these equations tell that
X 1t could be approximated by Bt:
Nevertheless, ðX 1t Þ is a continuous-time jump process

that proceeds with discrete jumps. In contrast, ðBtÞ has
continuous trajectories. In order to make rigorous
statements, we need to rescale the processes (Mt) and
ðX 1t Þ so that the mutations occur according to a Poisson
process of rate yp: In addition, the basic jump of the
rescaled process should be 71=

ffiffiffi
p

p
instead of 71:

In this situation, a basic step 71 is the result of
several steps of magnitude 71=

ffiffiffi
p

p
which occur at rate

p: When p goes to infinity, the rescaled process ðX p
t Þ

converges to Bt where ðBtÞ is
ffiffiffi
y

p
times the standard

Brownian motion.
3. Estimation based on pairwise statistics

In this section, we investigate the properties of an
estimator of y based on pairwise statistics. Consider a
data set D ¼ X1;y;Xn: The estimator is based on
squared distance, as proposed by Slatkin (1995) and
Goldstein et al. (1995) in the case of the stepwise
mutation model. The idea behind such an estimator
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relies on the fact that the squared distance increases
linearly with time when going forward in the genealogy.

3.1. Basic results about Xn

The data set D is made of exchangeable variables, i.e.,
the Xi are identically distributed and the distribution of
D is unchanged under arbitrary permutations of the
variables. Because we assume that Brownian motions
start from zero, the mean value of Xn is

E½Xn� ¼ 0:

This can actually be shifted to any other value E½Xn� ¼
m by modifying the ancestral position from 0 to m: This
may be important to do so in order to avoid negative
values, in particular when microsatellite evolution is
studied. The variance of Xn can be computed without
difficulties

E½X 2n � ¼
Z

N

0

E½B2t �fTn�1ðtÞ dt ¼ yE½Tn�1� ¼ 2yð1� 1=nÞ

and we see that an upper bound is 2y (the averaged
squared distance between clumps stay bounded away).

3.2. Squared distances

The distance between Xi and Xj is defined as follows:

dij ¼ jXi � Xjj;

and we study the pairwise squared distance statistics

S2n ¼ n

n � 1
1

n

X
i

X 2i � ð %XnÞ2
 !

:

3.2.1. Moments

In this paragraph, we describe the moments of the
difference X1 � X2 for two randomly chosen variables
X1 and X2 in D: Let T be the time until the most recent
common ancestor of the two individuals. Given T ¼ t;
X1 � X2 follows a Gaussian distribution of mean 0 and
variance 2yt: So, we have

E½X1 � X2jT � ¼ E½ðX1 � X2Þ3jT � ¼ 0;
E½ðX1 � X2Þ2jT � ¼ E½d212jT � ¼ 2yT ;

E½ðX1 � X2Þ4jT � ¼ E½d412jT � ¼ 12y2T2:

Because T follows an exponential distribution of
parameter 1, we have

E½d212� ¼
Z

N

0

E½S2njT ¼ t� fTðtÞ dt ¼ 2y
Z

N

0

tfTðtÞ dt

¼ 2yE½T �
¼ 2y: ð4Þ
The fourth-order moment of d12 can be computed as
follows:

E½d412� ¼
Z

N

0

E½d412jT ¼ t� fT ðtÞ dt ¼ 12y2
Z

N

0

t2fTðtÞ dt

¼ 12y2E½T2�
¼ 24y2: ð5Þ

Then, the variance of the squared distance is

Var½d212� ¼E½d412� � E½d212�
2

¼ 24y2 � 4y2

¼ 20y2: ð6Þ
Pritchard and Feldman (1996) obtained similar equa-
tions in the case of the stepwise mutation model.
Nevertheless, their result regarding the fourth-order
moment E½d412� was different and involved an additional
2y: To conclude this paragraph, we remark that the
distribution of d12 has a very simple expression

Pðd124tÞ ¼
Z

N

s¼0
PðjB2sj4tÞe�s ds

¼ expð�t=
ffiffiffi
y

p
Þ; t40;

from which the moments could be deduced again.

3.2.2. Bias

The result is that S2n is an unbiased estimator of y:
Indeed, we have

S2n ¼ 1

ðn � 1Þn
X
ioj

d2ij ;

and since the Xi’s are exchangeable, we find

E½S2n � ¼ 1
2

E½d212� ¼ y:

3.2.3. Variance

In order to find the variance of S2n ; we follow the same
lines of proof as Pritchard and Feldman (1996). Their
computations were based on the second and fourth
moments of d12; for which we obtained explicit
expressions in a previous paragraph. The variance of
S2n is

Var½S2n� ¼
2y2ð1þ 3n þ 2n2Þ
3ðn2 � nÞ :

Note that S2n is not a consistent estimator of y

Var½S2n�-
4

3
y2; as n-N:

Remark 1. Define ðX p
1 ;X

p
2 ;y;X p

n Þ as being a data set
obtained at the leaves of a coalescent tree from the
dynamics described in Section 2 and in Appendix A.
Assume the convergence of the moments of
ðX p
1 ;X

p
2 ;y;X p

n Þ to those of ðX1;X2;y;XnÞ: Let d
ðpÞ
ij
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be the difference between X
p
i and X

p
j : Define

S2nðpÞ ¼
1

nðn � 1Þ
X

1piojpn

d
ðpÞ
ij 2

¼ 1

pnðn � 1Þ
X

1piojpn

ð ffiffiffi
p

p
d
ðpÞ
ij Þ2:

For Bernoulli random walks, the random variableffiffiffi
p

p
d
ðpÞ
ij has the same distribution as the difference in

repeat number between two individuals in a single step
mutation model where the mutation rate is equal to py:
Applying the result of Pritchard and Feldman (1996),
we have

Var½S2nðpÞ� ¼
1

p2
yp½nðn þ 1Þ� þ 2y2p2½1þ 3n þ 2n2�

3ðn2 � nÞ :

Thanks to the convergence of moments, the variance
of S2n is

Var½S2n � ¼ limp-N

Var½S2nðpÞ� ¼
2y2ð1þ 3n þ 2n2Þ
3ðn2 � nÞ

and this establishes a direct proof of the result.
4. Estimation based on likelihood

4.1. A peeling algorithm

Given the set of data D ¼ x1;y; xn; likelihoods can
be computed as the integral of pðD=GÞ � pðG=yÞ over all
possible neutral genealogies G according to equation (1).
Kingman’s formula gives the distribution of genealogies
pðG=yÞ (see Section 2). In this Section, we describe a
peeling algorithm that enables computing the condi-
tional distribution pðD=GÞ given the genealogy analyti-
cally. This procedure is based on the explicit calculation
of the integrals that arise at each internal node of the
tree when applying Felsenstein’s likelihood method
(Felsenstein, 1981).
As usual in phylogenetic likelihood algorithms, we

associate trees with ðn � 1Þ � 4 arrays as follows
row i node 1 node 2 ancestor coalescence time
ði ¼ 1;y; n � 1Þ where n is the sample size. In addition,
we assume that the coalescence times are ranked in
increasing order, i.e., t1ot2o?otn�1: The leaves are
labelled from 1 to n and the other nodes (corresponding
to the ancestors) are labelled from n þ 1 to 2n � 1: For
example, consider the tree with 4 leaves given by

G ¼
1 2 5 t1

3 5 6 t2

4 6 7 t3
For D ¼ x1; x2; x3; x4; Felsenstein’s method computes
pðDjGÞ in the following way:

pðDjGÞ ¼
Z

pðx7Þpðx4jx7Þ �
Z

pðx6jx7Þpðx3jx6Þ

�
Z

pðx5jx6Þpðx1jx5Þpðx2jx5Þ dx5 dx6 dx7;

ð7Þ

where p is the distribution of X7 	 XMRCA the value
taken by the MRCA. Here, we consider a degenerate
distribution where

XMRCA ¼ m;

for some m in R: The procedure could be extended to
arbitrary Gaussian distributions without difficulties. The
computation of integrals of the type described above can
be performed using the following technical result. Let
a40 and b; g arbitrary real numbers, we have,Z þN

�N

e�ax2þ2bx�g dx ¼
ffiffiffi
p
a

r
expð�gþ b2=aÞ:

The distributions at each node can be characterized by
four parameters A; a; b; g; i.e.,

pðxjA; a; b; gÞ ¼ A expð�ax2 þ 2bx � gÞ:

We are now ready to describe the successive steps of the
peeling algorithm.
(1)
 The peeling algorithm is initialized at the leaves of
the tree as follows. If node n1 corresponds to a leaf,
then we take

A ¼ 1ffiffiffiffiffiffiffiffi
2pz

p ; a ¼ 1
2z
; b ¼ xn1a; g ¼ x2n1a;

where z is the time until the most recent common
ancestor with another node n2 (z can be read in the
fourth column of the tree structure). This computa-
tion corresponds for instance to the parameters that
define pðx1jx5Þ and pðx2jx5Þ in the example geneal-
ogy G:
(2)
 Parameters at internal nodes, e.g., corresponding to
the integral

I ¼
Z

pðx5jx6Þpðx1jx5Þpðx2jx5Þ dx5;

are computed recursively thanks to the following
induction formula:

A ¼ A1A2=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2zða1 þ a2Þ þ 1

p
;

a ¼ a1 þ a2
2zða1 þ a2Þ þ 1

;

b ¼ b1 þ b2
2zða1 þ a2Þ þ 1

;

g ¼ g1 þ g2 �
2zðb1 þ b2Þ2

2zða1 þ a2Þ þ 1
;



ARTICLE IN PRESS
M.G.B. Blum et al. / Theoretical Population Biology 65 (2004) 249–261254
where ðA1; a1; b1; g1Þ and ðA2; a2; b2; g2Þ are the
parameters at offspring nodes n1 and n2 and z is
the time since the ancestor of the internal node.
(3)
 The algorithm terminates with an integral at the
root of the tree, for which we use the same formula
with z ¼ 0: Finally, it returns
pðDjGÞ ¼ A expð�am2 þ 2bm � gÞ;
where m is the mean of the sample.
n ¼
#yn

bn

¼ e0:611�0:005nþ0:248
ffiffi
n

p
#yn:

able 1

inear regression results for the multiplicative bias of #y; E½#yn� ¼
nyþ an: The parameter y ranges from 0.1 to 50. The linear coefficients
re computed for different sample sizes. The intercepts an are not

gnificant

bn Std. error t-value Prð4jtjÞ R2

10 0.277 0.0049 56.6 1:34e� 29 0.99

20 0.202 0.0034 58.1 6:58e� 30 0.99

30 0.165 0.0018 87.2 1:22e� 34 0.99

40 0.138 0.0019 70.8 3:24e� 32 0.99

50 0.119 0.0015 74.8 7:62e� 33 0.99

100 0.074 0.0007 101.4 2:09e� 36 0.99

150 0.057 0.0010 53.1 7:38e� 29 0.99

200 0.046 0.0005 82.6 5:23e� 34 0.99

250 0.040 0.0003 115.4 6:38e� 38 0.99

300 0.035 0.0004 78.8 1:84e� 33 0.99

350 0.031 0.0004 70.7 3:44e� 32 0.99

400 0.033 0.0012 26.1 1:07e� 20 0.96

450 0.028 0.0005 54.1 2:86e� 28 0.99

500 0.028 0.0010 27.8 1:91e� 21 0.96

000 0.014 0.0001 95.5 1:20e� 34 0.99
A straightforward modification of this algorithm allows
computing the log of distributions log PðDjGÞ instead of
PðDjGÞ: The set of recursively computed parameters is
then logA; a; b and g: In practice, we set m ¼ %x (the
mean of the observed data). If a Gaussian distribution is
assumed at the root of the tree, the final step of the
algorithm could also use

z ¼ %s
2ð1� 1=nÞ

with %s2 the empirical variance of the data. In simulation
experiments, we assumed a deterministic value at the
root of the genealogy.

4.2. Pseudomaximum-likelihood algorithm

When computing LðyÞ; the genealogy of the data is
unknown. Nevertheless, this genealogy may be viewed as
an hidden or latent random variable over which an
average must be performed. A reasonable guess of what
the hidden variable looks like can help computing efficient
numerical approximations of the likelihood. Techniques
that employ such approximations are often called
pseudomaximum-likelihood methods (Seo et al., 2002).
In this section, we build a pseudomaximum-likelihood

method for estimating the parameter y based on a
specific genealogy. This tree is built from a phylogenetic
reconstruction method that uses squared Euclidean
distances between taxa (Slatkin, 1995). Because we
make the hypothesis of constant evolution along the
lineages, the UPGMA (Unweighted Pair Group Method
using Averages) method is a natural mean to construct
the topology of the tree (Nei, 1987).
Given the UPGMA topology, the lengths of the

branches are taken equal to the average intercoalescence
times, zn ¼ 2y=nðn � 1Þ;y; z3 ¼ 3y; z2 ¼ y: Therefore,
likelihoods are computed according to the peeling
algorithm of Section 4.1 within an OðnÞ time. The
pseudomaximum-likelihood parameter #y is then esti-
mated thanks to a dichotomic search method. A
limitation is that the method leads to a strong down-
ward bias for large y: This bias is due to the fact that
squared distances do not account for the large devia-
tions of Brownian motions.
In a first stage, we investigate the way of correcting

the bias of the estimator using a Monte Carlo study for
different parameter settings. In these experiments, data
sets are created using coalescent simulations. For a given
true parameter y; a genealogy is sampled. This
genealogy is then used to evolve the node variables
according to the Brownian motion model. The data
resulting at the tips of the simulated tree are then
exploited in order to study the properties of the
estimator. The experimental design consists of 1000
repetitions for each parameter setting ðy; nÞ: The
parameter y ranges from 0:1 to 50; and the sample size
ranges from n ¼ 10 to 1000.

4.2.1. Bias

The main result of the simulation study is that the
pseudomaximum-likelihood estimator #yn exhibits a
constant multiplicative bias

E½#yn�Ebny:

In this relationship, the parameter bn depends on the
sample size n and is independent on y (Table 1). This
observation is consistent with the scaling property of
Brownian motions. The values of the coefficient bn are
estimated as the correlation coefficient of a linear
regression. In addition, a second regression analysis
shows that the equation

E½#y� ¼ expð�0:611þ 0:005n � 0:248
ffiffiffi
n

p
Þy

fits the relationship between the average value of #y; y
and n extremely well (R2E0:99). This formula provides
a systematic way of correcting the estimation bias.

4.2.2. Variance

In a second stage, we investigate the quality of the
pseudomaximum-likelihood estimator after bias correc-
tion. The corrected estimator is computed as
*y

T

L

b

a

si

n

1
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Table 3

Regression results for the variance of the pseudomaximum-likelihood estimator Var½*y� ¼ cnyþ dny2: The linear coefficients cn are nonsignificant

n cn Std. error t-value Prð4jtjÞ dn Std. error t-value Prð4jtjÞ

20 �0.276 0.223 �1.237 0.233 0.230 0.038 5.960 1:55e� 05
30 0.179 0.107 1.660 0.115 0.075 0.0186 4.041 8:4e� 04
40 0.068 0.222 0.308 0.762 0.058 0.038 1.536 0.143

100 �0.038 0.042 �0.911 0.375 0.041 0.007 5.604 3:16e� 05
150 0.0008 0.046 �0.018 0.985 0.025 0.007 3.201 0.005

200 0.013 0.024 0.527 0.605 0.014 0.004 3.387 0.003

Table 2

Bias and variance of pseudomaximum-likelihood estimator after correction. Parameter settings vary from y ¼ 0:1 to 50, and sample sizes vary from
n ¼ 20 to 1000. The last column reports the standard deviations of the unbiaised pairwise estimator

y n Meanð*yÞ sdð*yÞ sdðs2nÞ y n Meanð*yÞ sdð*yÞ sdðs2nÞ

0.1 20 0.104 0.080 0.122 0.5 20 0.522 0.401 0.614

50 0.103 0.080 0.118 50 0.515 0.400 0.591

100 0.095 0.067 0.116 100 0.476 0.337 0.584

200 0.100 0.046 0.116 200 0.500 0.231 0.580

300 0.091 0.047 0.115 300 0.459 0.237 0.579

500 0.086 0.050 0.115 500 0.444 0.260 0.578

1000 0.105 0.099 0.115 1000 0.467 0.273 0.578

1 20 1.086 0.850 1.229 5 20 4.738 4.251 6.145

50 0.945 0.658 1.183 50 4.799 3.526 5.919

100 1.078 0.680 1.169 100 4.832 3.443 5.846

200 0.989 0.758 1.161 200 5.824 3.595 5.809

300 1.038 0.778 1.159 300 4.592 2.548 5.797

500 0.737 0.480 1.157 500 6.500 3.337 5.787

1000 1.272 0.684 1.156 1000 4.887 2.794 5.780

10 20 11.154 7.502 12.295 50 20 48.541 38.142 61.451

50 10.446 9.079 11.839 50 49.162 36.753 59.195

100 10.980 8.883 11.692 100 50.951 34.421 58.460

200 10.950 8.731 11.619 200 49.428 35.876 58.096

300 9.020 4.851 11.595 300 51.542 26.653 57.976

500 11.589 4.888 11.575 500 52.012 24.651 57.879

1000 10.01 5.251 11.561 1000 48.013 29.651 57.807
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For sample sizes below n ¼ 300; a quadratic relationship
between y and the variance of *y can be identified thanks
to a regression method

Varð*ynÞ ¼ dny
2:

Table 3 reports the values of the quadratic coefficient dn

and the significance levels of both coefficients cn and dn

in the regression model Varð*ynÞ ¼ cnyþ dny
2: In Table 2,

we report the average values of *y and the standard
deviations of this estimator. The last column in Table 2
gives the standard deviations of the unbiaised pairwise
estimator s2n: For small values of y (yp5), and samples
of intermediate size (about 100–500) individuals the
pseudomaximum-likelihood estimator is significantly
better than the pairwise statistic. This observation
remains true for larger y; but the relative benefit is
slighlty lower.
4.3. Lower bound of the variance of estimators of y

Consider the random genealogy associated with the
sample of data X1;y;Xn: There are exactly k branch
segments in the tree during the time that separates the
kth and the ðk � 1Þth internal nodes.
As Fu and Li (1993), we measure time in generations

and not in unit of N generations (in this subsection
only). Let us denote dk;i ði ¼ 1;y; kÞ; the algebraic
distance covered by the Brownian motions during zk

generations along the ith branch. The distribution of dk;i

is Gaussian with mean 0 and variance s2zk; where we
use the notation y ¼ s2N:
To establish a lower bound of the variance of

estimators of y; we follow the same lines of proofs as
Fu and Li (1993). This approach consists of assuming
that all evolutionary events are observable. More
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precisely, we consider that the true topology of the
genealogy is known as well as the number of generations
between coalescent events fzk; k ¼ 2yng; and the
algebraic distances covered by Brownian motions along
each branch fdk;i; k ¼ 2yn; i ¼ 1ykg: Such a statis-
tical model is called the complete case by Klein et al.
(1999) in the context of the infinitely many-sites model.
This model contains more informations than the
incomplete model where the observations are the
resulting values of the Brownian motions at the tips of
the tree. Because the distribution of the topology is
independent on N and s (Kingman, 1982), we can
restrict ourselves to the subset of data

S ¼ fzk; dk;i; k ¼ 2yn; i ¼ 1ykg:

Given S; the likelihood can be computed as follows:

Lðs2;N;SÞ ¼
Yn

k¼2

Yk

i¼1

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ps2zk

p e
�

d2
k;i

2s2zk

 !
kðk � 1Þ
2N

e�
kðk�1Þzk

2N

¼
Yn

k¼2

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ps2zk

p
 !k

e
� dk

2s2zk
kðk � 1Þ
2N

� e�
kðk�1Þzk

2N ; ð8Þ

where

dk ¼
Xk

i¼1
d2k;i:

The loglikelihood is

log L ¼C � ðn � 1Þðn þ 2Þ
4

log s2 � 1

2s2
Xn

k¼2

dk

zk

� ðn � 1ÞlogN �
Xn

k¼2

kðk � 1Þzk

2N
; ð9Þ

where C is independent of N and s: Fisher’s information
matrix can be deduced from Eq. (9) by computing the
second-order derivatives and taking the opposite of their
expected values

IðN; s2Þ ¼
n�1
N2

0

0 ðn�1Þðnþ2Þ
4s4

 !
:

Theorem 2. In the complete case and in the incomplete

case, the variance of all unbiased estimator $yn of y is

bounded below by

Var½ $yn�X
ðn þ 6Þ

ðn � 1Þðn þ 2Þ y
2: ð10Þ

This bound is asymptotically proportional to 1=n

which is the typical variance of an estimator build
according to independent observations. It can be
compared to a similar bound found by Fu and Li
(1993, Eq. (23)) in the infinite many sites model
asymptotically equal to 1=log n: The difference between
the two results is a consequence of the statistical
properties of the Poisson process. In the infinitely
many-sites model, the quantity of information depends
linearly on the time elapsed since the root of the tree.
Thus, the quantity of information in the complete case is
proportional to the length of the tree which is
asymptotically equal to 1=log n: In the Brownian
model, the quantity of information is constant on any
branch segment because of the rescaling property of
Brownian motions. Thus, the quantity of information
brought by the Brownian motions along the Oðn2Þ
branch segments is proportional to n2: The informa-
tion contained in the intercoalescence times is propor-
tional to n and gives the major contribution to the
Cramer–Rao estimate.

4.4. Markov chain Monte Carlo

Markov chain Monte Carlo (MCMC) methods are
computationally intensive statistical methods that have
proven successful in estimating parameters of popula-
tion genetics models. For instance, these methods have
recently been used in estimating mutation rates (Kuhner
et al., 1995), gene flow parameters (Beerli and Felsen-
stein, 2001), or the distribution of the time since the
most recent common ancestor of a population (Tavaré,
2001; Griffiths and Tavaré, 1994).

4.4.1. Method description

Our approach is similar to the one described in
Stephens (2003). In order to compute the likelihood of y;
an importance sampling method is applied. We use the
Metropolis–Hastings (MH) algorithm for drawing
samples of genealogies G1;G2;y from the importance
distribution

qðGÞ ¼ pðGjDÞppðDjGÞpðGjy0Þ;

where y0 is an initial value. Our approach to importance
sampling is based on the conditional coalescent. At this
stage, we use a Gibbs sampler implementation (Robert
and Casella, 1999). The strategy consists of removing a
single internal node of the tree G at each proposal step,
and then simulating the conditional coalescence time of
this node given that the other times remain unchanged.
The removed node is therefore randomly reintroduced
into the tree with its new coalescence time.
Given M trees, we compute relative likelihoods as

follows:

LðyÞ
Lðy0Þ

E
1

M

X
i

pðGijyÞ
pðGijy0Þ

:

In order to suppress the dependence on y0; this initial
setting is kept only during a preliminary sampling. Then
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Fig. 1. Histograms of 2 samples simulated according to the Brownian

model on coalescent trees. The first data set (a) exhibits two distinct

clusters whereas the spatial distribution of the second one (b) is more

uniform. There are 50 resulting individuals and y ¼ 50 in both
simulations.

Table 5

Properties of the MCMC estimator %y; 50 estimations have been run on
each data set. In data set 1, two clusters are emerging whereas no

distinct clusters are seen in data set 2. The estimator is more accurate
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a maximum likelihood value y1 based on this sample is
found. A second Markov chain starts from y1; and a
new maximum likelihood value y2 is found, etc. As
suggested by Kuhner et al. (1995), we run 10 short
chains and two longer ones at the end of the run.

4.4.2. Results

Data sets were created according to the same
procedure as the one used in Section 5.2. Table 4
reports simulation results regarding the convergence of
the MCMC estimator %y for sample sizes n ¼ 20; 50, 100,
200 and parameters y ¼ 1; 2.5, 5. Biases and standard
deviations are reported. In these experiments, the
starting value was set to y0 ¼ 3: For small sample sizes
ðnp50Þ; the bias appears to be low. This can be
explained as the set of genealogies is correctly explored,
and the Monte Carlo Markov chain reached stationar-
ity. For nX100; the algorithm gets stuck in local optima
more frequently. The standard deviations decrease as
the sample sizes increase from n ¼ 20 to 50. For large
sample sizes, small variances may indicate that the
algorithm has difficulties of escaping from the initial
settings.
In a second series of experiments, the algorithm was

run several times on two different simulated data sets
ðn ¼ 100; y ¼ 50Þ: In the first data set, two different
subpopulations are emerging whereas there are no
distinct clusters in the second one (Fig. 1). In order to
reconstruct the deep branches of the tree, more
information is present in the first data set than in the
second data set. The algorithm behaves differently in the
two cases. While the estimation of y is quite good for the
first data set, it is inaccurate for the second data set
(Table 5). This indicates that branches close to the root
may have a strong influence on the variance of the
estimator.
Table 4

Properties of the MCMC estimator %y: For each value of y and n; mean

and standard deviations are evaluated from 50 simulated data sets

y n Meanð%yÞ s.d.ð%yÞ 5th percentile 95th percentile

1 20 0.99 0.29 0.60 1.63

50 1.07 0.074 0.57 1.63

100 1.44 0.34 0.78 2.15

200 2.95 1.06 1.31 5.04

2.5 20 2.7 1.4 1.23 6.04

50 2.36 0.45 1.52 3.29

100 3.16 0.97 1.73 5.62

200 3.03 0.66 1.89 4.29

5 20 4.2 1.16 1.70 5.88

50 3.89 1.93 1.55 7.90

100 3.38 0.97 1.97 5.36

200 3.25 0.61 2.35 4.47

on data set 1. The true value is y ¼ 50; the initial value y0 has been set
up to y0 ¼ 70

Data set 1 Data set 2

Mean 59.7 93.3

Std. dev. 22.7 30.9

Median 55 87

5th percentile 33.4 49.35

95th percentile 92.6 149.5
5. Spatial dispersal: application to a biological data set

Estimating the amount of spatial dispersion of a
species, s2; is crucial for many ecological studies. Two
very different approaches to estimating this parameter
can be used: (1) direct methods using direct observations
of moving individuals (e.g., via mark and recapture),
and (2) indirect methods using genetic data from
samples of individuals. Direct methods can help to
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determine the spatial pattern of dispersion during the
study, and can deliver information about very recent
history. However, there are also obvious shortcom-
mings: The movements of individuals may be artefacts
of the study, the accuracy of the parameter estimates
may be small, and small dispersal rates may be
undetectable.
Several indirect methods were devoted to the estima-

tion of s2 based on molecular data. Slatkin (1993)
showed that for allele frequency data, under a variety of
dispersal models, there is an approximately linear log–
log relationship between the product of the effective size
and migration rates Nemij between a pair of populations
i and j and their geographic distance, Dij; namely

logNemij ¼ a þ b logDij:

A statistically significant negative regression coefficient,
b; indicates that migration between populations be-
comes lower as their geographic separation increases,
due to isolation by distance. This indicates that the
regression coefficient contained information about the
parameter s2: Rousset (1997) introduced a method
based on the computation of F -statistics which exploit
Slatkin’s idea. He obtained an approximately linear
relationship between Fst and the log of the geographic
distance. This gave a practical method of estimating ds2;
where d is the population density per surface unit.
Rousset (2003) provides a recent survey of other
methods available for estimating s2; and discusses the
limitations of each method. For instance, the above
method has the drawback of assuming well recognizable
demes of several individuals, and estimators based on Fst

may have high variance.
In Brownian models, the dispersal parameter is

defined as being the standard deviation in a model
where the locations of offspring followed from a
probabilistic distribution centered around the parent.
Felsenstein (1975) reported the existence of clumps in
similar continuous models of isolation by distance, and
some regulation of the density of individuals might be
added in view of realistic applications (Barton et al.,
2002). Brownian motions arise naturally in continuous
limits from Kimura’s stepwise migration models (Barton
et al., 2002; Nagylaki, 2002). In these works, the authors
usually study the conditional coalescence time given the
spatial locations of two or more individuals. The typical
conditional distribution has infinite mean, and hence is
very different from the unconditional coalescence times
used in the present article. However, although Brownian
models might represent a rough approximation of the
biological reality, it is useful because a number of
theoretical insights are available.
As an example, we illustrated our approach with a

sample of spatial locations of female brown bears in
Scandinavia. The Scandinavian brown bear population
has a strong phylopatry of females. Hence, the spatial
locations of females can be thought as being maternally
inherited like a haploid character. The Scandinavian
brown bear population is subdivided in two distinct
populations located at the South and North of an area
covering both Sweden and Norway (Taberlet et al.,
1994). These two subpopulations are isolated by the
distance and regulated by male migration (Waits et al.,
2000). We analyzed a sample of 64 female bears
locations in the South area. These data were recorded
as the latitude and the longitude of individuals at the
instant of capture and then converted in kilometers
(km). For this data set, the Mantel test of isolation by
distance was non-significant, and genepop gives an
estimate of s ¼ 2 km (Raymond and Rousset, 1995),
which is not in agreement with the knowledge of this
population (Waits et al., 2000). The estimation of the
effective size Ne is a critical step if one is interested in
estimating s2 from y: In this step, molecular data play
an important role. We used as an estimate NeE50 (see
Waits et al., 2000), confirmed by a multilocus micro-
satellite study that gave an expected homozygosity
about 0.5 in this geographical area (the mutation rate
can be taken as mE10e� 2 (Paetkau et al., 1998)). We
obtain yx ¼ s2NeE4350 and yyE3034 which means that
sE9–10 km which is more consistent with field ob-
servations (Eva Bellemain, private comm.).
6. Discussion

In this article, Brownian motions were considered as
models of evolution of genetic data (microsatellite) as
well as models for the inheritance of non-genetic
features (spatial locations). We proposed three estima-
tors for the parameter of such models. The first
estimator was based on mean pairwise square distance.
The second estimator was a phylogenetic estimator
relying on the UPGMA topology and mean coalescence
times. The third estimator was based on approximate
maximum likelihood using MCMC methods.
We found the exact variance of the mean pairwise

estimator. Regarding the phylogenetic estimator, we
found a systematic way of correcting the biases. After
the correction, the quality of the estimation improves
significantly. In addition, this approach has the merit of
being very fast (few milliseconds runtimes for sizes of
several hundred data). The MCMC method does not
lead to improved estimation. In addition, the practical
implementation of the MCMC method raises a number
of questions that are specific to this family of
algorithms. For instance, Wilson and Balding (1998)
also reported biases for MCMC estimators in the
context of microsatellite data when a single locus is
used and evolution is modeled as a discrete random
walk. This is in agreement with our results which show
that the most likely genealogies can hardly be sampled
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using the information contained in a one-dimensional
random walk.
Regarding the convergence issue of MCMC, some

difficult problems remain to be solved, where the
relevance of the transition kernel is of primary
importance. Even if our transition kernel had all the
theoretical properties required, many other kernels
should be tested and the choice for an optimal one is
an open question. MCMC is time consuming. Theore-
tically it is asymptotically unbiaised, but our simulations
shows the difficulty to tune the several internal para-
meters of the MCMC algorithm.
Some methods based on coalescent theory enable the

estimation of the effective size Ne in recently isolated
genetically diverging populations (O’Ryan et al., 1998).
These approaches require the knowledge of an addi-
tional event: the time since the (usually two) populations
have been isolated from each other. In the same spirit as
(O’Ryan et al., 1998), our approach also provides an
estimator of Ne given an estimator of s2 based on spatial
data. For instance, indirect estimation of s2 using DNA
fingerprinting (Bossart and Prowell, 1998) aims to
exploit the recent shared genetic history between parents
and offspring. Rousset’s approach could be utilized as
well, although the interpretation of the estimators
should be different (Rousset, 1997). Nevertheless, the
relevance of our method for estimating Ne could be a
promising application, although its primary objective
was estimating s2:
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Appendix A

Let us prove that Brownian motion can be obtained
as limits of compound Poisson process which includes
the stepwise mutation model.
Let ðxiÞiX1 be independent and identically distributed

random variables such that

E½xi� ¼ 0 and Var½xi� ¼ n2; n40:

Let y40: Consider a family of homogenous Poisson
process ðMp

t Þ of rate yp (pX1) where M
p
t is the number

of occurrences at time t: Define the compound Poisson

process ðX p
t Þ as follows:

X
p
t ¼ 1

n
ffiffiffi
p

p
XMp

t

i¼1
xi: ðA:1Þ

Consider Bernoulli random variables

Pðxi ¼ 1Þ ¼ Pðxi ¼ �1Þ ¼ 1=2:
In this situation, we have n2 ¼ 1: For p ¼ 1; M1
t

corresponds to the number of mutations at time t in
the stepwise mutation model, and X 1t is the number of
differences between the ancestral allelic state and the
current state.
We consider more general mutation models than the

ladder model, and establish the weak convergence of X
p
t

to Bt:

Theorem A.1. Let ðX p
: Þ be the stochastic process defined

in Eq. (A.1) and ðB:Þ be a one-dimensional standard

Brownian motion times
ffiffiffi
y

p
: We have

X p
: )

D
B:; as p-N;

where D denotes the weak convergence in DRð0;NÞ; the

set of càd-làg functions defined on ð0;NÞ:

Proof. For all t40 and pX1; the first and second
moments of X

p
t are

E½X p
t � ¼ 0

and

Var½X p
t � ¼E½ðX p

t Þ2� ¼ E½E½ðX p
t Þ2jMp

t ��

¼ 1
n2p

E E
XMp

t

i¼1
x2i jM

p
t

" #" #
¼ 1

n2p
E½Mp

t n
2�

¼ yt:

According to the Theorem 7.8 in Chapter 3 of Ethier and
Kurtz (1986), the result follows from the convergence of
the finite dimensional distributions and the relative
compactness of ðX p

: Þ which are demonstrated below. &

A.1. Convergence of the finite-dimensional distributions

Let

Y
p
t ¼ 1

n
ffiffiffi
p

p
XIyptm

i¼1
xi: ðA:2Þ

First, we show that the random variables X
p
t converge

weakly toward Bt for fixed t40

X
p
t )

D
Bt:

Lemma A.1. Let ðX p
t Þ and ðY p

t Þ be defined in Eqs. (A.1)
and (A.2). Then, ðY p

t � X
p
t Þ converges in probability to 0

as p-N:

Proof. Let pX1 and e40: By the stationarity of the xi’s,
we have

PðjX p
t � Y

p
t jXeÞ ¼P

1

n
ffiffiffi
p

p
���� XMp

t

i¼Iyptmþ1
xijXe

0
@

1
A

¼P
1

n
ffiffiffi
p

p
���� XjMp

t �Iptmj

i¼1
xijXe

 !
:
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Conditioning on M
p
t ; this probability is equal toXN

n¼0
P

Xjn�Iyptmj

i¼1

����� xijXn
ffiffiffi
p

p
e

 !
PðMp

t ¼ nÞ

p
XN
n¼0

1

n2p e2
Var

Xjn�Iyptmj

i¼1
xi

!"

� PðMp
t ¼ nÞ

and the upper bound follows from Chebyshev’s inequal-
ity. Then we have

PðjX p
t � Y

p
t jXeÞp

XþN

n¼0

jn � Iyptmj
pe2

PðMp
t ¼ nÞ

p
E½jMp

t � Iyptmj�
pe2

p
E½jðMp

t � yptÞ þ ðypt � IyptmÞj�
pe2

p
E½jMp

t � yptj� þ E½jypt � Iyptmj�
pe2

;

where we use the triangle inequality. We finish with the
Cauchy–Schwarz inequality

PðjX p
t � Y

p
t jXeÞpE½jMp

t � yptj� þ 1
pe2

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E½ðMp

t � yptÞ2�
q

þ 1
pe2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var½Mp

t �
p

þ 1
pe2

p
ffiffiffiffiffiffiffi
ypt

p
þ 1

pe2
:

Since

lim
p-N

ffiffiffiffiffiffiffi
ypt

p
þ 1

pe2
¼ 0;

the convergence is established. &

According to the central limit theorem and to the fact
that limp-þN

Ipytm
yp

¼ t; we have

Y
p
t !D Bt:

By Lemma 4, Slutsky’s Theorem (Ethier and Kurtz,
1986) ensures the convergence in law of X

p
t to Bt: Now,

fix tn4?4t140: Showing

ðX p
t1 ;y;X

p
tn
Þ )

D
ðBt1 ;y;Btn

Þ
amounts to prove that

ðX p
t1 ;y;X

p
tn
� X

p
tn�1Þ )D ðBt1 ;y;Btn

� Btn�1Þ:
This result can be easily checked from the independence
of increments in the compound Poisson process.

A.2. Relative compactness of ðX p
: ÞpX1

Let K be the set of compact subsets of R: From
Theorems 8.6 and 8.8 in Chapter 3 of Ethier and Kurtz
(1986), the following three conditions imply the relative
compactness of ðX p

: Þ:
* Condition (i)

8Z40; 8tAQ�
þ; (GZ;tAK; inf

pX1
PðX p

t AGZ;tÞX1� Z:

* Condition (ii)

(C40; 8T40; 8tA½0;T þ 1�; 8hA½0; t�;
E½jX p

tþh � X
p
t j2jX p

t � X
p
t�hj

2�pCh2:

* Condition (iii)

lim
d-0

sup
pX1

E½jX p
d � X

p
0 j�
2 ¼ 0:

To check these three conditions, the formula of the
variance of X

p
t (Eq. (A.2)) is useful. Let us prove (i).

ðX p
: Þ is a R-value process, so (i) is equivalent to

8Z40; 8tAQ�
þ; (aZ;tARþ; inf

pX1
PðX p

t 4aZ;tÞpZ:

Taking aZ;t ¼
ffiffi
t
Z

q
; the above property comes from

Tchebychev’s inequality.
We now prove (ii). Let T40 and 0ptpT :

E½jX p
tþh � X

p
t j2jX p

t � X
p
t�hj

2�
¼ E½jX p

tþh � X
p
t j2�E½jX p

t � X
p
t�hj

2� ¼ h2:

The second inequality comes from the independence of
increments in the compound Poisson process.
Let us prove (iii). We have

lim
d-0

sup
pX1

E½jjX p
d � X

p
0 j�
2 ¼ lim

d-0
sup
pX1

d ¼ lim
d-0

d ¼ 0:

References

Barton, N.H., Depaulis, F., Etheridge, A.M., 2002. Neutral evolution

in spatially continuous populations. Theor. Popul. Biol. 61, 31–48.

Beaumont, M.A., 2003. Conservation genetics. In: Balding, D.J.,

Bishop, M.J., Cannings, C. (Eds.), Handbook of Statistical

Genetics. Wiley, Chichester, UK, pp. 779–812.

Beerli, P., 2002. MIGRATE: documentation and program, part of

LAMARC. Version 1.5. Revised August 7, 2002. Distributed over

the Internet, http://evolution.genetics.washington.edu/lamarc.html

Beerli, P., Felsenstein, J., 2001. Maximum likelihood estimation of a

migration matrix and effective population sizes in n subpopulations

by using a coalescent approach. Proc. Natl. Acad. Sci. USA 98 (8),

4563–4568.

Bossart, J.L., Prowell, D.P., 1998. Genetic estimates of population

structure and gene flow: limitations, lessons, and new directions.

Trends Ecol. Evol. 13, 171–212.

Cox, J.T., Durrett, R., 2002. The stepping stone model: new formulas

expose old myths. Ann. Appl. Prob. 12, 1348–1377.

http://evolution.genetics.washington.edu/lamarc.html


ARTICLE IN PRESS
M.G.B. Blum et al. / Theoretical Population Biology 65 (2004) 249–261 261
Ethier, S.N., Kurtz, T.G., 1986. Markov Processes, Characterization

and Convergence. Wiley, New York.

Felsenstein, J., 1975. A pain in the torus: some difficulties with models

of isolation by distance. Am. Nat. 109, 359–368.

Felsenstein, J., 1981. Evolutionary trees from DNA sequences: a

maximum likelihood approach. J. Mol. Evol. 17, 368–376.

Felsenstein, J., Kuhner, M.K., Yamato, J., Beerli, P., 1999. Like-

lihoods on coalescents: a Monte Carlo sampling approach to

inferring parameters from population samples of molecular data.

Statistics in Molecular Biology, IMS Lecture Notes-Monograph

Series, Vol. 33, pp. 163–185.

Fu, Y.-X., Li, W.-H., 1993. Maximum likelihood estimation of

population parameters. Genetics 134, 1261–1270.

Goldstein, D.B., Linares, A.R., Cavalli-Sforza, L.L., Feldman, M.W.,

1995. An evaluation of genetic distances for use microsatellite loci.

Genetics 139, 463–471.
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