
The GraphLab Abstraction

1 A Need for GraphLab in ML
The GraphLab abstraction is the product of several years
of research in designing and implementing systems for
statistical inference in probabilistic graphical models.
Early in our work [12], we discovered that the high-level
parallel abstractions popular in the ML community such
as MapReduce [2, 13] and parallel BLAS [14] libraries
are unable to express statistical inference algorithms ef-
ficiently. Our work revealed that an efficient algorithm
for graphical model inference should explicitly address
the sparse dependencies between random variables and
adapt to the input data and model parameters.

Guided by this intuition we spent over a year design-
ing and implementing various machine learning algo-
rithms on top of low-level threading primitives and dis-
tributed communication frameworks such as OpenMP
[15], CILK++ [16] and MPI [1]. Through this process,
we discovered the following set of core algorithmic pat-
terns that are common to a wide range of machine learn-
ing techniques. Following, we detail our findings and
motivate why a new framework is needed (see Table 1).

Sparse Computational Dependencies: Many ML al-
gorithms can be factorized into local dependent com-
putations which examine and modify only a small sub-
region of the entire program state. For example, the con-
ditional distribution of each random variable in a large
statistical model typically only depends on a small subset
of the remaining variables in the model. This computa-
tional sparsity in machine learning arises naturally from
the statistical need to reduce model complexity.

Parallel abstractions like MapReduce [2] require algo-
rithms to be transformed into an embarrassingly parallel
form where computation is independent. Unfortunately,
transforming ML algorithms with computational depen-
dencies into the embarrassingly parallel form needed for
these abstractions is often complicated and can introduce
substantial algorithmic inefficiency [17]. Alternatively,
data flow abstractions like Dryad [3], permit directed
acyclic dependencies, but struggle to represent cyclic de-
pendencies common to iterative ML algorithms. Finally,
graph-based messaging abstractions like Pregel [4] pro-
vide a more natural representation of computational de-
pendencies but require users to explicitly manage com-
munication between computation units.

Asynchronous Iterative Computation: From simu-

lating complex statistical models, to optimizing parame-
ters, many important machine learning algorithms iterate
over local computation kernels. Furthermore, many iter-
ative machine learning algorithms benefit from [18, 19,
12] and in some cases require [20] asynchronous com-
putation. Unlike synchronous computation, in which
all kernels are computed simultaneously (in parallel) us-
ing the previous values for dependent parameters, asyn-
chronous computation requires that the local computa-
tion kernels use the most recently available values.

Abstractions based on bulk data processing, such as
MapReduce [2] and Dryad [3] were not designed for it-
erative computation. While recent projects like MapRe-
duce Online [9], Spark [11], Twister [21], and Nexus
[10] extend MapReduce to the iterative setting, they do
not support asynchronous computation. Similarly, par-
allel graph based abstractions like Pregel [4] and BPGL
[5] adopt the Bulk Synchronous Parallel (BSP) model [6]
and do not naturally express asynchronous computation.

Sequential Consistency: By ensuring that all paral-
lel executions have an equivalent sequential execution,
sequential consistency eliminates many challenges asso-
ciated with designing, implementing, and testing parallel
ML algorithms. In addition, many algorithms converge
faster if sequential consistency is ensured, and some even
require it for correctness.

However, this view is not shared by all in the ML com-
munity. Recently, [22, 23] advocate soft-optimization
techniques (e.g., allowing computation to intentionally
race), but we argue that such techniques do not apply
broadly in ML. Even for the algorithms evaluated in [22,
23], the conditions under which the soft-optimization
techniques work are not well understood and may fail
in unexpected ways on different datasets.

Indeed, for some machine learning algorithms sequen-
tial consistency is strictly required. For instance, Gibbs
sampling [24], a popular inference algorithm, requires
sequential consistency for statistical correctness, while
many other optimization procedures require sequential
consistency to converge (Fig. 1 demonstrates that the
prediction error rate of one of our example problems is
dramatically better when computation is properly asyn-
chronous.). Finally, as [19] demonstrates, the lack of se-
quential consistency can dramatically increase the time
to convergence for stochastic optimization procedures.

By designing an abstraction which enforces sequen-
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Computation
Model

Sparse
Depend.

Async.
Comp.

Iterative Prioritized
Ordering

Sequentially
Consistent a

Distributed

MPI[1] Messaging Yes Yes Yes N/A b N/A b Yes
MapReduce[2] Par. data-flow No No extensionsc N/A N/A Yes
Dryad[3] Par. data-flow Yes No extensionsd N/A N/A Yes
Pregel[4]/BPGL[5] GraphBSP[6] Yes No Yes N/A N/A Yes

Piccolo[7] Distr. mapf N/A f Yes Yes No accumulators Yes
Pearce et.al.[8] Graph Visitor Yes Yes Yes Yes No No

GraphLab GraphLab Yes Yes Yes Yese Yes Yes g

Table 1: Comparison chart of parallel abstractions: Detailed comparison against each of the abstractions are in the text (Sec. 1). (a) Here
we refer to Sequential Consistency with respect to asynchronous computation. See Sec. 1 for details. This property is therefore relevant only for
abstractions which support asynchronous computation. (b) MPI-2 does not define a data model and is a lower level abstraction than others listed.
(c) Iterative extension for MapReduce are proposed [9, 10, 11]. (d) [10] proposes an iterative extension for Dryad. (e) The GraphLab abstraction
allows for flexible scheduling mechanisms (our implementation provides FIFO and priority ordering). (f) Piccolo computes using user-defined
kernels with random access to a distributed key-value store. It does not model data dependencies. (g) To be released.

tially consistent computation, we eliminate much of the
complexity introduced by parallelism, allowing the ML
expert to focus on algorithm design and correctness of
numerical computations. Debugging mathematical code
in a parallel program which has random errors caused by
non-deterministic ordering of concurrent computation is
particularly unproductive.

The discussion of sequential consistency is relevant
only to frameworks which support asynchronous com-
putation. Piccolo [7] provides a limited amount of con-
sistency by combining simultaneous writes using accu-
mulation functions. However, this only protects against
single write races, but does not ensure sequential consis-
tency in general. The parallel asynchronous graph traver-
sal abstraction by Pearce et. al. [8] does not support any
form of consistency, and thus is not suitable for a large
class of ML algorithms.
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Figure 1: Convergence plot of Alternating Least Squares (Sec. ??)
comparing prediction error when running sequentially consistent asyn-
chronous iterations vs inconsistent asynchronous iterations over a five
node distributed cluster. Consistent iterations converge rapidly to a
lower error while inconsistent iterations oscillate and converge slowly.

Prioritized Ordering: In many ML algorithms, it-
erative computation converges asymmetrically. For ex-
ample, in parameter optimization, often a large number
of parameters will quickly converge after only a few it-
erations, while the remaining parameters will converge
slowly over many iterations [25, 26]. If we update all pa-
rameters equally often, we could waste substantial com-

putation recomputing parameters that have effectively
converged. Conversely, by focusing early computation
on more challenging parameters first, we can potentially
reduce computation.

Adaptive prioritization can be used to focus iterative
computation where it is needed. The only existing frame-
work to support this is the parallel graph framework by
Pearce et. al. [8]. The framework is based on the visitor-
pattern and prioritizes the ordering of visits to vertices.
GraphLab however, allows the user to define arbitrary
ordering of computation, and our implementation sup-
ports efficient FIFO and priority-based scheduling.

Rapid Development: Machine learning is a rapidly
evolving field with new algorithms and data-sets appear-
ing weekly. In many cases these algorithms are not yet
well characterized and both the computational and sta-
tistical properties are under active investigation. Large-
scale parallel machine learning systems must be able to
adapt quickly to changes in the data and models in or-
der to facilitate rapid prototyping, experimental analysis,
and model tuning. To achieve these goals, an effective
high-level parallel abstraction must hide the challenges
of parallel algorithm design, including race conditions,
deadlock, state-partitioning, and communication.

2 The GraphLab Abstraction
Using the ideas from the previous section, we extracted
a single coherent computational pattern: asynchronous
parallel computation on graphs with a sequential model
of computation. This pattern is both sufficiently expres-
sive to encode a wide range of ML algorithms, and suf-
ficiently restrictive to enable efficient parallel implemen-
tations.

The GraphLab abstraction consists of three main parts,
the data graph, the update function, and the sync opera-
tion. The data graph (Sec. 2.1) represents user modifiable
program state, and both stores the mutable user-defined
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data and encodes the sparse computational dependencies.
The update functions (Sec. 2.2) represent the factorized
user computation and operate on the data graph by trans-
forming data in small overlapping contexts called scopes.
Finally, the sync operation (Sec. 2.3) is used to maintain
global aggregate statistics of the data graph.

We now present the GraphLab abstraction in greater
detail. To make these ideas more concrete, we will
use the PageRank algorithm [27] as a running example.
While PageRank is not a common machine learning al-
gorithm, it is easy to understand and shares many prop-
erties common to machine learning algorithms.

Example 2.1 (PageRank). The PageRank algorithm re-
cursively defines the rank of a webpage v:

R(v) =
α

n
+ (1− α)

∑
u links to v

wu,v × R(u) (2.1)

in terms of the ranks of those pages that link to v and the
weight w of the link as well as some probability α of ran-
domly jumping to that page. The PageRank algorithm,
simply iterates Eq. (2.1) until the individual PageRank
values converge (i.e., change by less than some small ε).

2.1 Data Graph
The GraphLab abstraction stores the program state as
an undirected graph called the data graph. The data
graph G = (V,E,D) is a container which manages
the user defined data D. Here we use the term “data”
broadly to refer to model parameters, algorithmic state,
and even statistical data. The user can associate ar-
bitrary data with each vertex {Dv : v ∈ V } and edge
{Du↔v : {u, v} ∈ E} in the graph. Since some machine
learning applications require directed edge data (e.g.,
weights on directed links in a web-graph) we provide the
ability to store and retrieve data associated with directed
edges. While the graph data is mutable, the graph struc-
ture is static1 and cannot be changed during execution.

Example (PageRank: Ex. 2.1). The data graph for
PageRank is directly obtained from the web graph, where
each vertex corresponds to a web page and each edge
represents a link. The vertex data Dv stores R(v), the
current estimate of the PageRank, and the edge data
Du→v stores wu,v , the directed weight of the link.

The data graph is convenient for representing the state
of a wide range of machine learning algorithms. For ex-
ample, many statistical models are efficiently represented
by undirected graphs [28] called Markov Random Fields
(MRF). The data graph is derived directly from the MRF,
with each vertex representing a random variable. In this

1Although we find that fixed structures are sufficient for most ML
algorithms, we are currently exploring the use of dynamic graphs.
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Figure 2: In this figure we illustrate the GraphLab data graph as
well as the scope S1 of vertex 1. Each of the gray cylinders represent
a block of user defined data and is associated with a vertex or edge.
The scope of vertex 1 is illustrated by the region containing vertices
{1, 2, 3, 4}. An update function applied to vertex 1 is able to read
and modify all the data in S1 (vertex data D1, D2, D3, and D4 and
edge data D1↔2, D1↔3, and D1↔4).

case the vertex data and edge data may store the local
parameters that we are interested in learning.

2.2 Update Functions
Computation is encoded in the GraphLab abstraction via
user defined update functions. An update function is
a stateless procedure which modifies the data within the
scope of a vertex and schedules the future execution of
other update functions. The scope of vertex v (denoted
by Sv) is the data stored in v, as well as the data stored
in all adjacent vertices and edges as shown in Fig. 2.2.

A GraphLab update function takes as an input a vertex
v and its scope Sv and returns the new version of the
scope as well as a set of tasks T which encodes future
task executions.

Update : (v,Sv)→ (Sv, T )

After executing an update function the modified scope
data in Sv is written back to the data graph. Each task
in the set of tasks T , is a tuple (f, v) consisting of an
update function f and a vertex v. All returned task T are
executed eventually by running f(v,Sv) following the
execution semantics described in Sec. 2.4.

Rather than adopting a message passing or data flow
model as in [4, 3], GraphLab allows the user defined up-
date functions complete freedom to read and modify any
of the data on adjacent vertices and edges. This simpli-
fies user code and eliminates the need for the users to
reason about the movement of data. By controlling what
tasks are added to the task set, GraphLab update func-
tions can efficiently express adaptive computation. For
example, an update function may choose to reschedule
its neighbors only when it has made a substantial change
to its local data.

The update function mechanism allows for asyn-
chronous computation on the sparse dependencies de-
fined by the data graph. Since the data graph permits
the expression of general cyclic dependencies, iterative
computation can be represented easily.
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Algorithm 1: PageRank update function
Input: Vertex data R(v) from Sv

Input: Edge data {wu,v : u ∈ N[v]} from Sv

Input: Neighbor vertex data {R(u) : u ∈ N[v]} from Sv

Rold(v)← R(v) // Save old PageRank
R(v)← α/n
foreach u ∈ N[v] do // Loop over neighbors

R(v)← R(v) + (1− α) ∗ wu,v ∗ R(u)

// If the PageRank changes sufficiently
if |R(v)− Rold(v)| > ε then

// Schedule neighbors to be updated
return {(PageRankFun, u) : u ∈ N[v]}

Output: Modified scope Sv with new R(v)

Many algorithms in machine learning can be ex-
pressed as simple update functions. For example, prob-
abilistic inference algorithms like Gibbs sampling [24],
belief propagation [29], expectation propagation [30]
and mean field variational inference [31] can all be ex-
pressed using update functions which read the current
assignments to the parameter estimates on neighboring
vertices and edges and then apply sampling or optimiza-
tion techniques to update parameters on the local vertex.

Example (PageRank: Ex. 2.1). The update function for
PageRank (defined in Alg. 1) computes a weighted sum of
the current ranks of neighboring vertices and assigns it
as the rank of the current vertex. The algorithm is adap-
tive: neighbors are listed for update only if the value of
current vertex changes more than a predefined threshold.

2.3 Sync Operation
In many ML algorithms it is necessary to maintain global
statistics describing data stored in the data graph. For
example, many statistical inference algorithms require
tracking of global convergence estimators. Alternatively,
parameter estimation algorithms often compute global
averages or even gradients to tune model parameters. To
address these situations, the GraphLab abstraction ex-
presses global computation through the sync operation,
which aggregates data across all vertices in the graph in
a manner analogous to MapReduce. The results of the
sync operation are stored globally and may be accessed
by all update functions. Because GraphLab is designed
to express iterative computation, the sync operation runs
repeated at fixed user determined intervals to ensure that
the global estimators remain fresh.

The sync operation is defined as a tuple
(Key,Fold,Merge,Finalize, acc(0), τ) consisting
of a unique key, three user defined functions, an initial
accumulator value, and an integer defining the interval
between sync operations. The sync operation uses
the Fold and Merge functions to perform a Global
Synchronous Reduce where Fold aggregates vertex data

Algorithm 2: GraphLab Execution Model
Input: Data Graph G = (V,E,D)
Input: Initial task set T = {(f, v1), (g, v2), ...}
Input: Initial set of syncs:

(Name,Fold,Merge,Finalize, acc(0), τ)
while T is not Empty do

(f, v)← RemoveNext(T )1

(T ′,Sv)← f(v,Sv)2

T ← T ∪ T ′3

Run all Sync operations which are ready
Output: Modified Data Graph G = (V,E,D′)
Output: Result of Sync operations

and Merge combines intermediate Fold results. The
Finalize function performs a transformation on the final
value and stores the result. The Key can then be used by
update functions to access the most recent result of the
sync operation. The sync operation runs periodically,
approximately every τ update function calls2.

Example (PageRank: Ex. 2.1). We can compute the sec-
ond most popular page on the web by defining the fol-
lowing sync operation:

Fold :fld(acc, v,Dv) := TopTwo(acc ∪ R(v))
Merge :mrg(acc, acc′) := TopTwo(acc ∪ acc′)

Finalize :fin(acc) := acc[2]

Where the accumulator taking on the initial value as the
empty array acc(0) = ∅. The function “TopTwo(X)” re-
turns the two pages with the highest pagerank in the set
X . After the global reduction, the acc array will contain
the top two pages and acc[2] in Finalize extracts the sec-
ond entry. We may want to update the global estimate
every τ = |V | vertex updates.

2.4 The GraphLab Execution Model
The GraphLab execution model, presented in Alg. 2, fol-
lows a simple single loop semantics. The input to the
GraphLab abstraction consists of the data graph G =
(V,E,D), an update function Update, an initial set of
tasks T to update, and any sync operations. While there
are tasks remaining in T , the algorithm removes (Line 1)
and executes (Line 2) tasks, adding any new tasks back
into T (Line 3). The appropriate sync operations are exe-
cuted whenever necessary. Upon completion, the result-
ing data graph and synced values are returned to the user.

The exact behavior of RemoveNext(T ) (Line 1) is
up to the implementation of the GraphLab abstraction.
The only guarantee the GraphLab abstraction provides is

2The resolution of the synchronization interval is left up to the im-
plementation since in some architectures a precise synchronization in-
terval may be difficult to maintain.
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that RemoveNext removes and returns an update task
in T . The flexibility in the order in which RemoveNext
removes tasks from T provides the opportunity to bal-
ance features with performance constraints. For exam-
ple, by restricting task execution to a fixed order, it is
possible to optimize memory layout. Conversely, by sup-
porting prioritized ordering it is possible to implement
more advanced ML algorithms at the expense run-time
overhead.

The GraphLab abstraction presents a rich sequential
model that is automatically translated into a parallel ex-
ecution by allowing multiple processors to remove and
execute update tasks simultaneously. To retain the same
sequential execution semantics we must ensure that over-
lapping computation is not run simultaneously. However,
the extent to which computation can safely overlap de-
pends on the user defined update function. In the next
section we introduce several consistency models that al-
low the runtime to optimize the parallel execution while
maintaining consistent computation.

2.5 Sequential Consistency Models
A parallel implementation of GraphLab must guarantee
sequential consistency [32] over update tasks and sync
operations. We define sequential consistency in the con-
text of the GraphLab abstraction as:

Definition 2.1 (GraphLab Sequential Consistency). For
every parallel execution of the GraphLab abstraction,
there exists a sequential ordering on all executed update
tasks and sync operations which produces the same data
graph and synced global values.

A simple method to achieve sequential consistency
among update functions is to ensure that the scopes of
concurrently executing update functions do not over-
lap. We refer to this as the full consistency model
(see Fig. 3(a)). Full consistency limits the potential par-
allelism since concurrently executing update functions
must be at least two vertices apart (see Fig. 3(b)). Even
in moderately dense data graphs, the amount of avail-
able parallelism could be low. Depending on the actual
computation performed within the update function, ad-
ditional relaxations can be safely made to obtain more
parallelism without sacrificing sequential consistency.

We observed that for many machine learning algo-
rithms, the update functions do not need full read/write
access to all of the data within the scope. For in-
stance, the PageRank update in Eq. (2.1) only requires
read access to edges and neighboring vertices. To pro-
vide greater parallelism while retaining sequential con-
sistency, we introduced the edge consistency model. If
the edge consistency model is used (see Fig. 3(a)), then
each update function has exclusive read-write access to

its vertex and adjacent edges but read only access to adja-
cent vertices. This increases parallelism by allowing up-
date functions with slightly overlapping scopes to safely
run in parallel (see Fig. 3(b)).

Finally, for many machine learning algorithms there
is often some initial data pre-processing which only re-
quires read access to adjacent edges and write access to
the central vertex. For these algorithms, we introduced
the weakest vertex consistency model (see Fig. 3(a)).
This model has the highest parallelism but only permits
fully independent (Map) operations on vertex data.

While sequential consistency is essential when design-
ing, implementing, and debugging complex ML algo-
rithms, an adventurous user [23] may want to relax the
theoretical consistency constraints. Thus, we allow users
to choose a weaker consistency model at their own risk.
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Figure 3: To ensure sequential consistency while providing the maximum parallelism, the GraphLab abstraction provides three different con-
sistency models: full, edge, vertex. In figure (a), we illustrate the read and write permissions for an update function executed on the central vertex
under each of the consistency models. Under the full consistency model the update function has complete read write access to its entire scope.
Under the slightly weaker edge consistency model the update function has only read access to adjacent vertices. Finally, vertex consistency model
only provides write access to the local vertex data. The vertex consistency model is ideal for independent computation like feature processing. In
figure (b) We illustrate the trade-off between consistency and parallelism. The dark rectangles denote the write-locked regions which cannot over-
lap. Update functions are executed on the dark vertices in parallel. Under the full consistency model we are only able to run two update functions
f(2,S2) and f(5,S5) simultaneously while ensuring sequential consistency. Under the edge consistency model we are able to run three update
functions (i.e., f(1,S1), f(3,S3), and f(5,S5)) in parallel. Finally under the vertex consistency model we are able to run update functions on all
vertices in parallel.
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