
Incremental Spectral Sparsification for Large-Scale
Graph-Based Semi-Supervised Learning

Daniele Calandriello∗1, Alessandro Lazaric†1, Michal Valko‡1 and Ioannis Koutis§2

1SequeL team, INRIA Lille - Nord Europe, France
2Computer Science Department, University of Puerto Rico - Rio Piedras

Abstract
While the harmonic function solution per-
forms well in many semi-supervised learn-
ing (SSL) tasks, it is known to scale poorly
with the number of samples. Recent success-
ful and scalable methods, such as the eigen-
function method [11] focus on efficiently ap-
proximating the whole spectrum of the graph
Laplacian constructed from the data. This
is in contrast to various subsampling and
quantization methods proposed in the past,
which may fail in preserving the graph spec-
tra. However, the impact of the approxima-
tion of the spectrum on the final generaliza-
tion error is either unknown [11], or requires
strong assumptions on the data [15]. In this
paper, we introduce Sparse-HFS, an effi-
cient edge-sparsification algorithm for SSL.
By constructing an edge-sparse and spec-
trally similar graph, we are able to lever-
age the approximation guarantees of spectral
sparsification methods to bound the gener-
alization error of Sparse-HFS. As a result,
we obtain a theoretically-grounded approx-
imation scheme for graph-based SSL that
also empirically matches the performance of
known large-scale methods.

1 Introduction
In many classification and regression tasks, obtain-
ing labels for large datasets is expensive. When the
number of labeled samples is too small, traditional su-
pervised learning algorithms fail in learning accurate
predictors. Semi-supervised learning (SSL) [7, 29] ef-
fectively deals with this problem by integrating the
∗daniele.calandriello@inria.fr
†alessandro.lazaric@inria.fr
‡michal.valko@inria.fr
§ioannis.koutis@upr.edu

labeled samples with an additional set of unlabeled
samples, which are abundant and readily available in
many applications (e.g., set of images collected on web
sites [11]). The intuition behind SSL is that unla-
beled data may reveal the underlying structure of the
problem (e.g., a manifold) that could be exploited to
compensate for the limited number of labels and im-
prove the prediction accuracy. Among different SSL
settings, in this paper we focus on the case where data
are embedded in a graph. The graph is expected to
effectively represent the geometry of data and graph-
based SSL [30, 3, 25] methods leverage the intuition
that nodes that are similar according to the graph are
more likely to be labeled similarly. A popular approach
is the harmonic function solution (HFS) [30, 2, 11],
whose objective is to find a solution where each node’s
value is the weighted average of its neighbors. Com-
puting the HFS solution requires solving a Laplacian
regularized least-squares problem. While the resulting
solution is both empirically effective [11] and enjoys
strong performance guarantees [3, 9], solving exactly
the least-squares problem on a graph with n nodes
amounts to O(n3) time and O(n2) space complexity.
Using a general iterative solver on a graph with m
edges to obtain a comparable solution requires only
O(mn) time and O(m) space, but this is still practi-
cally unfeasible in many applications of interest. In
fact, many graphs have naturally a large number of
edges, so that even if the n nodes could fit in memory,
storing m edges largely exceeds the memory capac-
ity. For instance, Facebook’s graph of relationships [8]
counts about n = 1.39e9 users connected by a trillion
(m = 1e12) edges. While n is still in the order of the
memory capacity, the edges cannot be stored in a sin-
gle computer. A similar issue is faced when the graph
is built starting from a dataset, for instance using a
k-nn graph. In this case m = kn edges are created,
and sometimes a large k is necessary to obtain good
performance [23], or artificially adding neighbours can
improve the stability of the method [13]. In such prob-
lems, a direct application of HFS is not possible and

1

ar
X

iv
:1

60
1.

05
67

5v
1

 [
st

at
.M

L
]

 2
1

Ja
n

20
16

thus some form of approximation or graph sketching is
required. A straightforward approach is to distribute
the graph over multiple machines in a cluster and re-
sort to an iterative solver for the solution of the least-
squares problem [8]. Distributed algorithms require
infrastructure and careful engineering in order to deal
with communication issues [6]. But even assuming
that these problems are satisfactorily dealt with, all
known iterative solvers that have provably fast con-
vergence do not have known distributed implementa-
tions, as they assume random, constant time access to
all the edges in the graph. Thus one would have to
resort to distributed implementations of simpler but
much slower methods, in effect trading-off space for a
significant reduction in overall efficiency.

More principled methods try to address the mem-
ory bottleneck by directly manipulating the structure
of the graph to reduce its size. These include sub-
sampling the nodes of the original graph, quantiza-
tion, approaches related to manifold learning, and var-
ious approximation strategies. The most straightfor-
ward way to reduce the complexity in graph-based
method is to subsample the nodes to create a smaller,
backbone graph of representative vertices, or land-
marks [26]. Nyström sampling methods [20] randomly
select s nodes from the original graph and compute q
eigenvectors of the smaller graph, which can be later
used to solve the HFS regularized problem. It can be
shown [20] that the reconstructed Laplacian is accu-
rate in `2-norm and thus only its largest eigenvalue
is preserved. Unfortunately, the HFS solution does
not depend only on the largest eigenvalues, both be-
cause the largest eigenvectors are the ones most pe-
nalized by HFS’s regularizer ([3]) and because the-
oretical analysis shows that preserving the smallest
eigenvalue is important for generalization bounds ([2]).
As a result, subsampling methods can completely
fail when the sampled nodes compromise the spec-
tral structure of the graph [11]. Although alternative
techniques have been developed over years (see e.g.,
[14, 28, 31, 12, 27, 22]), this drawback is common to
all backbone graph methods. Motivated by this obser-
vation, other approaches focus on computing a more
accurate approximation of the spectrum of the Lapla-
cian. Fergus et al. [11] build on the observation that
when the number of unlabeled samplesn tends to infin-
ity, the eigenvectors of the Laplacian tend to the eigen-
functions of the sampling distribution P. Thus instead
of approximating eigenvectors in Rn, they first com-
pute empirical eigenfunctions of the estimated sam-
pling distribution (defined on the d-dimensional fea-
ture space) obtained by assuming that P is factorized
and by using a histogram estimation over b bins over
each dimension separately. While the method scales
to the order of million nodes, it still requires d and b

to be small to be efficient. Furthermore, no theoret-
ical analysis is available, and the method may return
poor approximations whenever the sampling distribu-
tion is not factorized. Motivated by the empirical suc-
cess of [11], Ji et al. [15] proposed a similar algorithm,
Simple-HFS, for which they provide theoretical guar-
antees. However, in order to prove bounds on the gen-
eralization error, they need to assume several strong
and hard to verify assumptions, such as a sufficiently
large eigengap. On the contrary, the guarantees for
our method work for any graph.

Our contribution In this paper, we focus on re-
ducing the space complexity of graph-based SSL while
matching the smallest possible computational com-
plexity of Ω(m) up to logarithmic factors1 and provid-
ing strong guarantees about the quality of the solution.
In particular, we introduce a novel approach which
employs efficient spectral graph sparsification tech-
niques [17] to incrementally process the original graph.
This method, coupled with dedicated solvers for sym-
metric diagonally dominant (SDD) systems [19], allows
to find an approximate HFS solution without storing
the whole graph in memory and to control the compu-
tational complexity as n grows. In fact, we show that
our proposed method, called Sparse-HFS, requires
only fixed O(n log2(n)) space to run, and allows to
compute solutions to large HFS problems in memory.
For example, in the experimental section we show that
the sparsifier can achieve an accuracy comparable to
the full graph, using one order of magnitude less edges.
With a careful choice of the frequency of resparsifica-
tion, the proposed method does not increase signifi-
cantly the running time. Given a minimum amortized
cost of Ω(1) per edge, necessary to examine each edge
at least once, our algorithm only increases this cost
to O(log3(n)). Furthermore, using the approximation
properties of spectral sparsifiers and results from al-
gorithmic stability theory [5, 9] we provide theoreti-
cal guarantees for the generalization error for Sparse-
HFS, showing that the performance is asymptotically
the same as the exact solution of HFS. Finally, we re-
port empirical results on both synthetic and real data
showing that Sparse-HFS is competitive with sub-
sampling and the EigFun method in [11].

2 Graph-Based Semi-Supervised
Learning

Notation. We denote with lowercase letter a a scalar,
with bold lowercase letter a a vector and with upper-

1While the computational complexity of exact HFS is
O(mn), many approximated methods can significantly reduce
it. Nonetheless, any method that requires reading all the edges
once has at least Ω(m) time complexity.

2

case letter A a matrix. We consider the problem of re-
gression in the semi-supervised setting, where a large
set of n points X = (x1, . . . ,xn) ⊂ Rd is drawn from a
distribution P and labels {yi}li=1 are provided only for
a small (random) subset S ⊂ X of l points. Graph-
based SSL builds on the observation that P is often
far from being uniform and it may display a specific
structure that could be exploited to “propagate” the
labels to similar unlabeled points. Building on this in-
tuition, graph-based SSL algorithms consider the case
when the points in X are embedded into an undirected
weighted graph G = (X , E) with |E| = m edges. Asso-
ciated with each edge ei,j ∈ E there is a weight aei,j
measuring the “distance” between xi andxj2. A graph-
based SSL algorithm receives as input G and the labels
of the nodes in S and it returns a function f : X → R
that predicts the label for all nodes in X . The objec-
tive is to minimize the prediction error over the set T
of u = n − l unlabeled nodes. In the following we
denote by y ∈ Rn the full vector of labels.

Stable-HFS. HFS directly exploits the structure
embedded in G to learn functions that are smooth over
the graph, thus predicting similar labels for similar
nodes. Given the weighted adjacency matrix AG and
the degree matrix DG , the Laplacian of G is defined
as LG = DG − AG . The Laplacian LG is semi-definite
positive (SDP) with Ker(LG) = 1. Furthermore, we
assume that G is connected and thus has only one
eigenvalue at 0. Let L+

G be the pseudoinverse of LG ,
and L

−1/2
G = (L+

G)1/2. The HFS method [30] can be
formulated as the Laplacian-regularized least-squares
problem

f̂ = arg min
f∈Rn

1
l (f − y)TIS(f − y) + γfTLGf , (1)

where IS ∈ Rn×n is the identity matrix with ze-
ros corresponding to the nodes not in S and γ is a
regularization parameter. The solution can be com-
puted in closed form as f̂ = (γlLG + IS)+yS , where
yS = ISy ∈ Rn. The singularity of the Laplacian
may lead to unstable behavior with drastically dif-
ferent results for small perturbations to the dataset.
For this reason, we focus on the Stable-HFS algo-
rithm proposed in [2] where an additional regulariza-
tion term is introduced to restrict the space of admis-
sible hypotheses to the space F = {f : 〈f ,1〉 = 0} of
functions orthogonal to null space of LG (i.e., centered
functions). This restriction can be easily enforced by
introducing an additional regularization term µ

l f
>1

in Eq. 1. As shown in [2], in order to guarantee
that the resulting f̂ actually belongs to F , it is suf-
ficient to set the regularization parameter to µ =

2Notice that G can be either constructed from the data (e.g.,
building a k-nn graph using the exponential distance aei,j =

exp(−||xi − xj ||2/σ2)) or it can be provided directly as input
(e.g., in social networks).

input Graph G = (X , E), labels yS , accuracy ε
output Solution f̂ , sparsified graph H
Let α = 1/(1− ε) and N = α2n log2(n)/ε2

Partition E in τ = dm/Ne blocks ∆1, . . . ,∆τ

Initialize H = ∅
for t = 1, . . . , τ do
Load ∆t in memory
Compute Ht = sparsify(Ht−1,∆t, N, α)

end for
Center the labels ỹS
Compute f̃ with Stable-HFS with ỹS using a suitable
SDD solver

Figure 1: Sparse-HFS

((γlLG + IS)+yS)T1/((γlLG + IS)+1)T1, and com-
pute the solution as f̂ = (γlLG + IS)+(yS − µ1).
Furthermore, it can be shown that if we center the
vector of labels ỹS = yS − yS , with y = 1

l y
T
S1,

then the solution of Stable-HFS can be rewritten
as f̂ = (γlLG+IS)+(ỹS−µ1) =

(
PF (γlLG+IS)

)+
ỹS ,

where PF = LGL
+
G is the projection matrix on the n−1

dimensional space F . Indeed, since the Laplacian of
any graph G has a null space equal to the one vector 1,
then PF is invariant w.r.t. the specific graph G used to
defined it. While Stable-HFS is more stable and thus
more suited for theoretical analysis, its time and space
requirements remain O(mn) and O(m), and cannot be
applied to graph with a large number of edges.

3 Spectral Sparsification for
Graph-Based SSL

In this section we introduce a novel variant of HFS,
called Sparse-HFS, where spectral graph sparsifica-
tion techniques are integrated into Stable-HFS, dras-
tically reducing the time and memory requirements
without compromising the resulting accuracy.
Spectral sparsification. A graph sparsifier re-

ceives as input a graph G and it returns a graph H on
the same set of nodes X but with much fewer edges.
Among different techniques [1], spectral sparsification
methods provide the stronger guarantees on the accu-
racy of the resulting graph.

Definition 1. A 1±ε spectral sparsifier of G is a graph
H ⊆ G such that for all x ∈ Rn

(1− ε)xTLGx ≤ xTLHx ≤ (1 + ε)xTLGx.

The key idea [24] is that to construct a sparse
graph H, it is sufficient to randomly select m′ =
O(n log(n)/ε2) edges from G with a probability pro-
portional to their effective resistance and add them to
the new graph with suitable weights. While storing
the sparsified graph requires only O(m′) space, it still
suffers from major limitations: (i) the naive compu-
tation of the effective resistances needs O(mn log(n))

3

input A sparsifier H, block ∆, number of edges N , effec-
tive resistance accuracy α

output A sparsifier H′, probabilities {p̃′e : e ∈ H′}.
Compute estimates of R̃′e for any edge in H + ∆ such
that 1/α ≤ R̃′e/R′e ≤ α with an SDD solver [19]
Compute probabilities p̃′e = (aeR̃

′
e)/(α(n − 1)) and

weights we = ae/(Np̃
′
e)

For all edges e ∈ H compute p̃′e ← min{p̃e, p̃′e} and
initialize H′ = ∅
for all edges e ∈ H do
Add edge e to H′ with weight we with prob. p̃′e/p̃e

end for
for all edges e ∈ ∆ do

for i = 1 to N do
Add edge e to H′ with weight we with prob. p̃′e

end for
end for

Figure 2: Kelner-Levin Sparsification algorithm [17]

time3, (ii) it requires O(m) space to store the initial
graph G, and (iii) computing the HFS solution on H
in a naive way still has a cost of O(m′n). For this
reason, we employ more sophisticated solutions and
integrate the recent spectral sparsification technique
for the semi-streaming setting in [17] and the efficient
solver for SDD systems in [19]. The resulting algo-
rithm is illustrated in Fig. 1.

We first introduce additional notation. Given two
graphs G and G′ over the same set of nodes X , we
denote by G + G′ the graph obtained by summing
the weights on the edges of G′ to G. For any node
i = 1, . . . , n, we denote with χi ∈ Rn the indicator
vector so that χi − χj is the “edge” vector. The ef-
fective resistance of an edge ei,j in a graph G is equal
to Rei,j = (χi − χj)TL+

G (χi − χj). The key intuition
behind our Sparse-HFS is that processing the graph
incrementally allows to dramatically reduce the mem-
ory requirements and keep low time complexity at the
same time. Let ε be the (spectral) accuracy desired for
the final sparsified graph H, Sparse-HFS first parti-
tions the set of edges E of the original graph G into
τ blocks (∆1, . . . ,∆τ) of size N = α2n log2(n)/ε2,
with α = 1/(1 − ε). While the original graph with
m edges is too large to fit in memory, each of these
blocks has a number of edges which is nearly linear
in the number of nodes and can be easily managed.
Sparse-HFS processes blocks over iterations. Start-
ing with an empty graph H0, at each iteration t a new
block ∆t is loaded and the intermediate sparsifierHt−1
is updated using the routine sparsify, which is guar-
anteed to return a (1 ± ε)-sparsifier of size N for the

3A completely naive method would solve n linear problems,
each costing O(mn). Using random projections we can solve
only log(n) problems with only a small constant multiplicative
error [18].

graph Ht−1 + ∆t. After all the blocks are processed, a
sparsifier H is returned and the Stable-HFS solution
can be computed. Since H is very sparse (i.e., it only
contains N = O(n log2(n)) edges), it is now possible to
use efficient solvers for linear sparse systems and dras-
tically reduce the computational complexity of solv-
ing Stable-HFS from O(Nn) down to O(N log(n)).
The routine sparsify can be implemented using dif-
ferent spectral sparsification techniques developed for
the streaming setting, here we rely on the method pro-
posed in [17]. The effective resistance is computed for
all edges in the current sparsifier and the new block
using random projections and an efficient solver for
SDD systems [19]. This step takes O(N log n) time
and it returns α-accurate estimates R̃′e of the effec-
tive resistance for the 2N nodes in Ht−1 and ∆t. If
α = 1/(1 − ε) and the input graph Ht−1 is a (1 ± ε)-
sparsifier, then sampling N edges proportionally to R̃′e
is guaranteed to generate a (1±ε)-sparsifier for the full
graph Gt =

∑t
s=1 ∆s up to iteration t. More details

on this process are provided in Fig. 2 and in [17]. The
resulting process has a space complexity O(N) and
a time complexity that never exceeds O(N log(n)) in
sparsifying each block and computing the final solu-
tion (see next section for more precise statements on
time and space complexity).

4 Theoretical Analysis
We first report the time and space complexity of
Sparse-HFS. This result follows from the properties
of the sparsifier in [17] and the SDD solver in [19] and
thus we do not report its proof.

Lemma 1. Let ε > 0 be the desired accuracy and δ >
0 the probability of failure. For any connected graph
G = (X , E) with n nodes, m edges, eigenvalues 0 =
λ1(G) < λ2(G) ≤ . . . ≤ λn(G), and any partitioning
of E into τ blocks, Sparse-HFS returns a graph H
such that for any i = 1, . . . , n

(1− ε)λi(G) ≤ λi(H) ≤ (1 + ε)λi(G), (2)

with prob. 1 − δ (w.r.t. the random estimation of
the effective resistance and the sampling of edges
in the sparsify routine). Furthermore, let N =
α2n log2(n)/ε2 for α = 1/(1 − ε) and τ = m/N , then
with prob. 1 − δ Sparse-HFS has an amortized time
per edge of O(log3(n)) and it requires O(N) memory.4

The previous lemma shows the dramatic improve-
ment of Sparse-HFS w.r.t. Stable-HFS in terms
of both time and space complexity. In fact, while
solving Stable-HFS in a naive way can take up to

4In all these big-O expressions we hide multiplicative con-
stants independent from the graph and terms log(1/δ) which
depends on the high-probability nature of the statements.

4

O(m) space and O(mn) time, Sparse-HFS drops
these requirements down to O(n log2(n)/ε2) space and
O(m log3(n)) time, which allows scaling Stable-HFS
to graphs orders of magnitude bigger. These improve-
ments have only a limited impact on the spectrum
of G and all its eigenvalues are approximated up to a
(1± ε) factor. Moreover, all of the sparsification guar-
antees hold w.h.p. for any graph, regardless of how
it is generated, its original spectra, and more impor-
tantly regardless of the exact order in which the edges
are assigned to the blocks. Finally, we notice that
the choice of the number of blocks as m/N is crucial
to guarantee a logarithmic amortized time, since each
iteration takes O(N log3(n)) time. As discussed in
Sect. 6, this property allows to directly apply Sparse-
HFS in online learning settings where edges arrive in
a stream and intermediate solutions have to be com-
puted incrementally. In the following, we show that,
unlike other heuristics, the space complexity improve-
ments obtained with sparsification come with guar-
antees and do not degrade the actual learning per-
formance of HFS. The analysis of SSL algorithms is
built around the algorithm stability theory [5], which
is extensively used to analyse transductive learning al-
gorithms [10, 9]. We first remind the definition of al-
gorithmic stability.

Definition 2. Let L be a transductive learning algo-
rithm. We denote by f and f ′ the functions obtained by
running L on datasets X = (S, T) and X = (S ′, T ′)
respectively. L is uniformly β-stable w.r.t. the squared
loss if there exists β ≥ 0 such that for any two par-
titions (S, T) and (S ′, T ′) that differ by exactly one
training (and test) point and for all x ∈ X ,

|(f(x)− y(x))2 − (f ′(x)− y(x))2| ≤ β.

Define the empirical error as R̂(f) = 1
l

∑l
i=1(f(xi) −

y(xi))
2 and the generalization error as R(f) =

1
u

∑u
i=1(f(xi)− y(xi))

2.

Theorem 1. Let G be a fixed (connected) graph with n
nodes X and m edges E and eigenvalues 0 = λ1(G) <
λ2(G) ≤ . . . ≤ λn(G). Let y ∈ Rn be the labels of
the nodes in G with |y(x)| ≤ M and F be the set of
centered functions such that |f(x) − y(x)| ≤ c. Let
S ⊂ X be a random subset of labeled nodes. If the cor-
responding labels ỹS are centered and Sparse-HFS is
run with parameter ε, then w.p. at least 1 − δ (w.r.t.
the random generation of the sparsifier H and the ran-
dom subset of labeled points S) the resulting function f̃
satisfies,

R(f̃) ≤ R̂(f̂)+
l2γ2λn(G)2M2ε2

(lγ(1− ε)λ2(G)− 1)4
+ β+

(
2β +

c2(l + u)

lu

)√
π(l, u) ln 1

δ

2
, (3)

where f̂ is the solution of exact Stable-HFS on G,

π(l, u) =
lu

l + u− 0.5

2 max{l, u}
2 max{l, u} − 1

, and

β ≤ 1.5M
√
l

(lγ(1− ε)λ2(G)− 1)2
+

4M

lγ(1− ε)λ2(G)− 1
.

Theorem 1 shows how approximating G with H im-
pacts the generalization error as the number of labeled
samples l increases. If we compare the bound to the ex-
act case (ε = 0), we see that for any fixed ε the rate of
convergence is not affected by the sparsification. The
first term in Eq. 3 is of order O(ε2/l2(1 − ε)4) and
it is the additive error w.r.t. the empirical error R(f̂)
of the Stable-HFS solution. For any constant value
of ε, this term scales as 1/l2 and thus it is dominated
by the second term in the stability β. The β term it-
self preserves the same order of convergence as for the
exact case up to a constant term of order 1/(1 − ε).
In conclusion, for any fixed value of the ε, Sparse-
HFS preserves the same convergence rate as the exact
Stable-HFS w.r.t. the number of labeled and unla-
beled points. This means that ε can be arbitrarily
chosen to trade off accuracy and space complexity (in
Lemma 1) depending on the problem constraints. Fur-
thermore running time does not depend on this trade-
off, because less frequent resparsifications will balance
the increased block size.

Proof. Step 1 (generalization of stable algo-
rithms). Let β be the stability of Sparse-HFS, then
using the result in [9], we have that with probability at
least 1− δ (w.r.t. the randomness of the labeled set S)
the solution f̃ returned by the Sparse-HFS satisfies

R(f̃) ≤ R̂(f̃) + β +
(

2β +
c2(l + u)

lu

)√π(l, u) log(1/δ)

2
.

In order to obtain the final result and study how
much the sparsification may affect the performance of
Stable-HFS, we first derive an upper bound on the
stability of Sparse-HFS and then relate its empirical
error to the one of Stable-HFS.
Step 2 (stability). The bound on the stability fol-

lows similar steps as in the analysis of Stable-HFS
in [2] integrated with the properties of streaming spec-
tral sparsifiers in [17] reported in Lemma 1. Let S
and S ′ be two labeled sets only differing by one ele-
ment and f̃ and f̃ ′ be the solutions obtained by run-
ning Sparse-HFS on S and S ′ respectively. With-
out loss of generality, we assume that IS(l, l) = 1
and IS(l + 1, l + 1) = 0, and the opposite for IS′ .
The original proof in [9] showed that the stability β

can be bounded as β ≤ ‖f̃ − f̃ ′‖. In the follow-
ing we show that the difference between the solu-
tions f̃ and f̃ ′, and thus the stability of the algorithm,

5

is strictly related to eigenvalues of the sparse graphH.
Let A = PF (lγLH + IS) and B = PF (lγLH + IS′),
we remind that if the labels are centered, the solu-
tions of Sparse-HFS can be conveniently written as
f̃ = A−1ỹS and f̃ ′ = B−1ỹS′ . As a result, the differ-
ence between the solutions can be written as

‖f̃ − f̃ ′‖ = ‖A−1ỹS −B−1ỹS′‖ (4)

≤ ‖A−1(ỹS − ỹS′)‖+ ‖A−1ỹS′ −B−1ỹS′‖.

Let consider any vector f ∈ F , since the null space of
a Laplacian LH is the one vector 1 and PF = LHL

+
H,

then PF f = f . Thus we have

‖PF (lγLH + IS)f‖
(1)

≥ ‖PF lγLHf‖−‖PFISf‖
(2)

≥ ‖PF lγLHf‖−‖f‖
(3)

≥ (lγλ1(H)−1)‖f‖ (5)

where (1) follows from the triangle inequality and (2)
follows from the fact that ‖PFISf‖ ≤ ‖f‖ since the
largest eigenvalue of the project matrix PF is one and
the norm of f restricted on S is smaller than the norm
of f . Finally (3) follows from the fact that ‖PFLHf‖ =
‖LHL+

HLHf‖ = ‖LHf‖ and since f is orthogonal to
the null space of LH then ‖LHf‖ ≥ λ2(H)‖f‖, where
λ2(H) is the smallest non-zero eigenvalue of LH. At
this point we can exploit the spectral guarantees of the
sparsified graph LH and from Lemma 1, we have that
λ2(H) ≥ (1− ε)λ2(G). As a result, we have an upper-
bound on the spectral radius of the inverse operator
(PF (lγLH + IS))−1 and thus

‖A−1(yS − yS′)‖ ≤ ‖yS − yS′‖
lγ(1− ε)λ1(G)− 1

≤ 4M

lγ(1− ε)λ1(G)− 1
,

where the first step follows from Eq. 5 since both ỹS
and ỹS′ are centered and thus (yS − yS′) ∈ F , and
the second step is obtained by bounding ‖ỹS − ỹS′‖ ≤
‖yS − yS′‖ + ‖yS − yS′‖ ≤ 4M . The second term in
Eq. 4 can be bounded as

‖A−1ỹS′ −B−1ỹS′‖ = ‖B−1(B −A)A−1ỹS′‖

= ‖B−1PF (IS − IS′)A−1ỹS′‖ ≤ 1.5M
√
l

(lγ(1− ε)λ1(G)− 1)2
,

where we used ‖ỹS′‖ ≤ ‖yS′‖ + ‖yS′‖ ≤ 2M
√
l,

‖PF (IS−IS′)‖ ≤
√

2 < 1.5 and we applied Eq. 5 twice.
Putting it all together we obtain the final bound re-
ported in the statement.
Step 3 (empirical error). The other element ef-

fected by the sparsification is the empirical error R̂(f̃).

Let Ã = PF (lγLH + IS), Â = PF (lγLG + IS), then

R̂(f̃) =
1

l
‖IS f̃ − IS f̂ + IS f̂ − ỹS‖2

≤ 1
l ‖IS f̂ − ỹS‖2 + 1

l ‖IS f̃ − IS f̂‖
2

≤ R̂(f̂) + 1
l ‖IS(Ã−1 − Â−1)ỹS‖2

≤ R̂(f̂) + 1
l ‖Â

−1(Â− Ã)Ã−1ỹS‖2

≤ R̂(f̂) +
1

l

lM2

(lγ(1− ε)λ1(G)− 1)4
‖Â− Ã‖2,

where in the last step we applied Eq. 5 on both
Â−1 and Ã−1. We are left with ‖Â − Ã‖2 =
‖PF lγ(LG−LH)‖2. We first recall that PF = L+

GLG =

L
−1/2
G LGL

−1/2
G (and equivalently with G replaced by

H) and we introduce P̃F = L
−1/2
G LHL

−1/2
G . We have

‖Â− Ã‖2 (1)
= l2γ2‖LG − LH‖2

(2)
= l2γ2‖L1/2

G (PF − P̃F)L
1/2
G ‖

2

(3)

≤ l2γ2λn(G)2‖PF − P̃F‖2
(4)

≤ l2γ2λ2nε
2,

where in (1) we use PFLG = LG and PFLH = LH,
in (2) we rewrite LG = L

1/2
G L

−1/2
G LGL

−1/2
G L

1/2
G =

L
1/2
G PFL

1/2
G and LG = L

1/2
G L

−1/2
G LHL

−1/2
G L

1/2
G =

L
1/2
G P̃FL

1/2
G , in (3) we split the norm and use the fact

that the spectral norm of LG corresponds to its largest
eigenvalue λn(G), while in (4) we use the fact that
Def. 1 implies that (1 − ε)PF � P̃F � (1 + ε)PF and
thus the largest eigenvalue of PF − P̃F is ε2‖PF‖ ≤ ε2.
The final statement follows by combining the three
steps above.

5 Experiments
In this section we evaluate the empirical accuracy of
Sparse-HFS compared to other baselines for large-
scale SSL on both synthetic and real datasets.
Synthetic data. The objective of this first exper-

iment is to show that the sparsification method is ef-
fective in reducing the number of edges in the graph
and that preserving the full spectrum of G retains the
accuracy of the exact HFS solution. We evaluate the
algorithms on the R2 data distributed as in Fig. 4(a),
which is designed so that a large number of neighbours
is needed to achieve a good accuracy. The dataset
is composed of n = 12100 points, where the two up-
per clusters belong to one class and the two lower to
the other. We build an unweighted, k-nn graph G for
k = 100, . . . , 12000. After constructing the graph, we
randomly select two points from the uppermost and
two from lowermost cluster as our labeled set S. We
then run Sparse-HFS with ε = 0.8 to compute H

6

Guarant. Space Preprocessing Time Solving Time

Sparse-HFS N = O(n log2(n)) O(m log3(n)) O(N log(n)) = O(n log3(n))
Stable-HFS O(m) O(m) O(mn)
Simple-HFS O(m) O(mq) O(q4)

EigFun O(nd+ nq + b2) O(qb3 + db3) O(q3 + nq)
SubSampling O(sk) O(m) O(s2k + n)

Figure 3: Guarantees and Computational complexities. Bold text indicates unfeasible time or space complexity.
Guarantees unavailable. Simple-HFS’s guarantees require assumptions on the graph G.

(a) −1 0 1

−3

−2

−1

0

1

2

3

4

5

6

(b) 0 2000 4000 6000 8000 10000 12000
40

50

60

70

80

90

100

Number of NN

Ac
cu

ra
cy

stable-HFS
sparse-HFS

(c) 0 2000 4000 6000 8000 10000 12000
0

0.2

0.4

0.6

0.8

1

Number of NN

N
/m

Figure 4: (a) The dataset of the synthetic experiment, (b)
Accuracy of Stable-HFS and Sparse-HFS, (c) ratio of
the number of edges |H|/|G|.

and f̃ , and run (exact) Stable-HFS on G to com-
pute f̂ , both with γ = 1. Fig. 4(b) reports the accuracy
of the two algorithms. Both algorithms fail to recover
a good solution until k ≈ 4000. This is due to the fact
that until a certain threshold, each cluster remains sep-
arated and the labels cannot propagate. Beyond this
threshold, Stable-HFS is very accurate, while, as k
increases again, the graph becomes almost full, mask-
ing the actual structure of the data and thus loosing
performance again. We notice that the accuracy of
Stable-HFS and Sparse-HFS is never significantly
different, and, quite importantly, they match around
the value of k = 4500 that provides the best perfor-
mance. This is in line with the theoretical analysis
that shows that the contribution due to the sparsifica-
tion error has the same order of magnitude as the other
elements in the bound. Furthermore, in Fig. 4(c) we
report the ratio of the number of edges in the sparsi-
fier H and G. This quantity is always smaller than one
and it constantly decreases since the number of edges
in H is constant, while the size G increases linearly
with the number of neighbors (i.e., |H|/|G| = O(1/k)).
We notice that for the optimal k the sparsifier contains
less than 10% of the edges of the original graph but it
achieves almost the same accuracy.
Spam-filtering dataset. We now evaluate the per-

formance of our algorithm on the TREC 2007 Public

Time complexity (10^9)

0 2 4 6 8 10
50

60

70

80

90

100 l=20

0 2 4 6 8 10
50

60

70

80

90

100 l=100

0 2 4 6 8 10
50

60

70

80

90

100 l=1000

Ac
cu

ra
cy

Ac
cu

ra
cy

Ac
cu

ra
cy

0 2 4 6 8 10
50

60

70

80

90

100 l=20

0 2 4 6 8 10
50

60

70

80

90

100 l=100

0 2 4 6 8 10
50

60

70

80

90

100 l=1000

Space complexity (10^7)

Figure 5: Accuracy vs complexity on the TREC 2007
SPAM Corpus for different number of labels. Legend:

Sparse-HFS, EigFun, SubSampling, 1-NN

Spam Corpus5, that contains n = 75419 raw emails
labeled as either SPAM or HAM. The emails are pro-
vided as raw text and we applied standard NLP tech-
niques to extract features vectors from it. In particu-
lar, we computed TF-IDF scores for each of the emails,
with some additional cleaning in the form of a stop
word list, simple stemming and dropping the 1% most
common and most rare words. We ended up with d =
68697 features, each representing a word present in
some of the emails. From these features we proceeded
to build a graph G where given two emails xi,xj , the
weight is computed as aij = exp(−‖xi − xj‖/2σ2),
with σ2 = 3. We consider the transductive setting,
where the graph is fixed and known, but only a small
random subset of l = {20, 100, 1000} labels is revealed
to the algorithm. As a performance measure, we con-
sider the prediction accuracy over the whole dataset.
We compare our method to several baselines. The
most basic supervised baseline is 1-NN, which con-

5http://plg.uwaterloo.ca/~gvcormac/treccorpus07/

7

http://plg.uwaterloo.ca/~gvcormac/treccorpus07/

nects each node to the closest labeled node. The
SubSampling algorithm selects uniformly s nodes out
of n, computes the HFS solution on the induced sub-
graph of G and assigns to each node outside of the
subset the same label as the closest node in the subset.
SubSampling’s complexity depends on the size s of
the subgraph and the number k of neighbors retained
when building the k-nn subgraph. The eigenfunction
(EigFun) algorithm [11] tries to sidestep the computa-
tional complexity of finding an HFS solution on G, by
directly approximating the distribution that created
the graph. Starting directly from the samples, each
of the d feature’s density is separately approximated
using histograms with b bins. From the histograms, q
empirical eigenfunctions (vectors in Rn) are extracted
and used to compute the final solution. We did not in-
clude Stable-HFS and Simple-HFS in the compar-
ison because their O(m) space complexity made them
unfeasible for this dataset. In Fig. 5, we report the
accuracy of each method against the time and space
complexity, where each separate point corresponds to
a different choice in metaparameters (e.g. k, q, s). For
EigFun, we use the same b = 50 as in the original
implementation, but we varied q from 10 to 2000. For
SubSampling, s = 15000 and k varies from 100 to
10000. We run Sparse-HFS on G setting ε = 0.9, and
changing the size m of the input graph by changing
the number of neighbours k from 1000 to 7500. Since
the actual running time and memory occupation are
highly dependent on the implementation (e.g., Eig-
Fun is implemented in Matlab, while Sparse-HFS
is Matlab/C), the complexities are computed using
their theoretical form (e.g., O(m log3(n)) for Sparse-
HFS) with the values actually used in the experiment
(e.g., m = nk for a k-nn graph). All the complexities
are reported in Fig. 3. The only exception is the num-
ber of edges in the sparsifier N used in the space com-
plexity of Sparse-HFS. Since this is a random quan-
tity that holds only w.h.p. and that is independent
from implementation details, we measured it empiri-
cally and used it for the complexities. For all meth-
ods we notice that the performance increases as the
space complexity gets larger, until a peak is reached,
while additional space induces the algorithms to over-
fit and reduces accuracy. For EigFun this means that
a large number of eigenfunctions is necessary to accu-
rately model the high dimensional distribution. And
as theory predicts, SubSampling’s uniform sampling
is not efficient to approximate the graph spectra, and
a large subset of the nodes is required for good perfor-
mance. Sparse-HFS’s accuracy also increases as the
input graph gets richer, but unlike the other methods
the space complexity does not change much. This is
because the sparsifier is oblivious to the structure of
the graph, and even if Sparse-HFS reaches its opti-

mum performance for k = 3000, the sparsifier contains
roughly the same number of edges present as k = 1000,
and only 5% of the edges present in the input graph.
Although preliminary, this experiment shows that the
theoretical properties of Sparse-HFS translate into
an effective practical algorithm which is competitive
with state-of-the-art methods for large-scale SSL.

6 Conclusions and Future Work
We introduced Sparse-HFS, an algorithm that com-
bines sparsification methods and efficient solvers for
SDD systems to find approximate HFS solutions us-
ing only O(n log2(n)) space instead of O(m). Further-
more, we show that the O(m log3(n)) time complexity
of the methods is only a polylog term away from the
smallest possible complexity Ω(m). Finally, we pro-
vide a bound on the generalization error that shows
that the sparsification does not affect the asymptotic
convergence rate of HFS. As such, the accuracy pa-
rameter ε can be freely chosen to meet the desired
trade-off between accuracy and space complexity. In
this paper we relied on the sparsifier in [17] to guar-
antee a fixed space requirement, and the solver in [19]
to efficiently compute the effective resistances. Both
are straightforward to scale and parallelize [4], and the
bottleneck in practice reduces to finding a fast sparse
matrix-vector multiplication implementation for which
many off-the-shelf solutions exist. We also remark
that Sparse-HFS could easily accommodate any im-
proved version of these algorithms and their proper-
ties would directly translate into the performance of
Sparse-HFS. In particular [19] already mentions how
finding an appropriate spanning tree (a low-stretch
tree) and using it as the backbone of the sparsifier
allows to reduce the space requirements of the spar-
sifier. Although this technique could lower the space
complexity to O(n log(n)), it is not clear how to find
such a tree incrementally. An interesting feature of
Sparse-HFS is that it could be easily employed in on-
line learning problems where edges arrive in a stream
and intermediate solutions have to be computed over
time. Since Sparse-HFS has a O(log3(n)) amortized
time per edge, it could compute intermediate solutions
every N edges without compromising its overall time
complexity. The fully dynamic setting, where edges
can be both inserted and removed, is an important
extension where our approach could be further inves-
tigated, especially because it has been observed in sev-
eral domains that graphs become denser as they evolve
over time [21]. While sparsifiers have been developed
for this setting (see e.g., [16]), current solutions would
require O(n2 polylog(n)) time to compute the HFS so-
lution, thus making it unfeasible to repeat this compu-
tation many times over the stream. Extending spar-
sification techniques to the fully dynamic setting in a
computationally efficient manner is an open problem.

8

References

[1] Joshua Batson, Daniel A. Spielman, Nikhil Sri-
vastava, and Shang-Hua Teng. Spectral sparsifi-
cation of graphs: Theory and algorithms. Com-
mun. ACM, 56(8):87–94, August 2013.

[2] Mikhail Belkin, Irina Matveeva, and Partha
Niyogi. Regularization and Semi-Supervised
Learning on Large Graphs. In Proceedings of
COLT, 2004.

[3] Mikhail Belkin, Partha Niyogi, and Vikas Sind-
hwani. Manifold Regularization: A Geometric
Framework for Learning from Labeled and Un-
labeled Examples. Journal of Machine Learning
Research, 7:2399–2434, 2006.

[4] Guy E Blelloch, Ioannis Koutis, Gary L Miller,
and Kanat Tangwongsan. Hierarchical diagonal
blocking and precision reduction applied to com-
binatorial multigrid. In High Performance Com-
puting, Networking, Storage and Analysis (SC),
2010 International Conference for, pages 1–12.
IEEE, 2010.

[5] Olivier Bousquet and André Elisseeff. Stabil-
ity and generalization. The Journal of Machine
Learning Research, 2:499–526, 2002.

[6] Zhuhua Cai, Zekai J Gao, Shangyu Luo, Luis L
Perez, Zografoula Vagena, and Christopher Jer-
maine. A comparison of platforms for implement-
ing and running very large scale machine learning
algorithms. In Proceedings of the 2014 ACM SIG-
MOD international conference on Management of
data, pages 1371–1382. ACM, 2014.

[7] Olivier Chapelle, Bernhard Schlkopf, and Alexan-
der Zien. Semi-Supervised Learning. The MIT
Press, 1st edition, 2010.

[8] Avery Ching, Sergey Edunov, Maja Kabiljo,
Dionysios Logothetis, and Sambavi Muthukrish-
nan. One trillion edges: graph processing at
facebook-scale. Proceedings of the VLDB Endow-
ment, 8(12):1804–1815, 2015.

[9] Corinna Cortes, Mehryar Mohri, Dmitry Pechy-
ony, and Ashish Rastogi. Stability of transductive
regression algorithms. In Proceedings of ICML,
pages 176–183. ACM, 2008.

[10] Ran El-Yaniv and Dmitry Pechyony. Stable trans-
ductive learning. In Proceedings of COLT, pages
35–49. Springer, 2006.

[11] Rob Fergus, Yair Weiss, and Antonio Torralba.
Semi-Supervised Learning in Gigantic Image Col-
lections. In Proceedings of NIPS, pages 522–530,
2009.

[12] Jochen Garcke and Michael Griebel. Semi-
supervised learning with sparse grids. In Proc. of
the 22nd ICML Workshop on Learning with Par-
tially Classified Training Data, 2005.

[13] David F. Gleich and Michael W. Mahoney. Us-
ing local spectral methods to robustify graph-
based learning algorithms. In Proceedings of the
21th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’15,
pages 359–368, New York, NY, USA, 2015. ACM.

[14] Tony Jebara, Jun Wang, and Shih-Fu Chang.
Graph construction and b-matching for semi-
supervised learning. In Proceedings of the 26th
Annual International Conference on Machine
Learning, pages 441–448. ACM, 2009.

[15] Ming Ji, Tianbao Yang, Binbin Lin, Rong Jin,
and Jiawei Han. A Simple Algorithm for Semi-
supervised Learning with Improved Generaliza-
tion Error Bound. In Proceedings of ICML, June
2012.

[16] Michael Kapralov, Yin Tat Lee, Christopher
Musco, and Aaron Sidford. Single pass spectral
sparsification in dynamic streams. In Foundations
of Computer Science (FOCS), 2014 IEEE 55th
Annual Symposium on, pages 561–570. IEEE,
2014.

[17] Jonathan A. Kelner and Alex Levin. Spectral
Sparsification in the Semi-streaming Setting. The-
ory of Computing Systems, 53(2):243–262, Au-
gust 2013.

[18] Ioannis Koutis, Alex Levin, and Richard Peng.
Improved spectral sparsification and numerical al-
gorithms for sdd matrices. In STACS’12 (29th
Symposium on Theoretical Aspects of Computer
Science), volume 14, pages 266–277. LIPIcs, 2012.

[19] Ioannis Koutis, Gary L. Miller, and Richard Peng.
A nearly-m log n time solver for SDD linear sys-
tems. In IEEE 52nd Annual Symposium on Foun-
dations of Computer Science, FOCS, pages 590–
598, 2011.

[20] Sanjiv Kumar, Mehryar Mohri, and Ameet Tal-
walkar. Sampling methods for the Nyström
method. J. Mach. Learn. Res., 13(1):981–1006,
April 2012.

9

[21] Jure Leskovec, Jon Kleinberg, and Christos
Faloutsos. Graphs over time: densification laws,
shrinking diameters and possible explanations. In
Proceedings of the eleventh ACM SIGKDD in-
ternational conference on Knowledge discovery in
data mining, pages 177–187. ACM, 2005.

[22] Wei Liu, Junfeng He, and Shih-Fu Chang. Large
graph construction for scalable semi-supervised
learning. In Proceedings of the 27th interna-
tional conference on machine learning (ICML-
10), pages 679–686, 2010.

[23] Avneesh Saluja, Hany Hassan, Kristina
Toutanova, and Chris Quirk. Graph-based
semi-supervised learning of translation models
from monolingual data. In Proceedings of the
52nd Annual Meeting of the Association for
Computational Linguistics (ACL), Baltimore,
Maryland, June, 2014.

[24] Daniel A. Spielman and Nikhil Srivastava. Graph
sparsification by effective resistances. SIAM Jour-
nal on Computing, 40(6):1913–1926, 2011.

[25] Amarnag Subramanya and Partha Pratim Taluk-
dar. Graph-based semi-supervised learning. Syn-
thesis Lectures on Artificial Intelligence and Ma-
chine Learning, 8(4):1–125, 2014.

[26] Ameet Talwalkar, Sanjiv Kumar, and Henry A.
Rowley. Large-scale manifold learning. In Com-
puter Vision and Pattern Recognition (CVPR),
2008.

[27] Ivor W. Tsang and James T. Kwok. Large-scale
sparsified manifold regularization. In Bernhard
Schölkopf, John C. Platt, and Thomas Hoffman,
editors, NIPS, pages 1401–1408. MIT Press, 2006.

[28] Kai Yu and Shipeng Yu. Blockwise supervised
inference on large graphs. In Proc. of the 22nd
ICML Workshop on Learning, 2005.

[29] Xiaojin Zhu. Semi-Supervised Learning Liter-
ature Survey. Technical Report 1530, U. of
Wisconsin-Madison, 2008.

[30] Xiaojin Zhu, Zoubin Ghahramani, and John Laf-
ferty. Semi-Supervised Learning Using Gaussian
Fields and Harmonic Functions. In Proceedings of
ICML, pages 912–919, 2003.

[31] Xiaojin Zhu and John D. Lafferty. Harmonic
mixtures: combining mixture models and graph-
based methods for inductive and scalable semi-
supervised learning. In Proceedings of ICML,
pages 1052–1059, 2005.

10

	1 Introduction
	2 Graph-Based Semi-Supervised Learning
	3 Spectral Sparsification for Graph-Based SSL
	4 Theoretical Analysis
	5 Experiments
	6 Conclusions and Future Work

