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Abstract

In this paper, we focus on computing a consistent traffic signal config-
uration at each junction that optimizes multiple performance indices, i.e.,
multi-objective traffic signal control. The multi-objective function includes
minimizing trip waiting time, total trip time, and junction waiting time.
Moreover, the multi-objective function includes maximizing flow rate, satis-
fying green waves for platoons traveling in main roads, avoiding accidents
especially in residential areas, and forcing vehicles to move within moderate
speed range of minimum fuel consumption. In particular, we formulate our
multi-objective traffic signal control as a Multi-Agent System (MAS). Traf-
fic signal controllers have a distributed nature in which each traffic signal
agent acts individually and possibly cooperatively in a MAS. In addition,
agents act autonomously according to the current traffic situation without
any human intervention. Thus, we develop a multi-agent multi-objective Re-
inforcement Learning (RL) traffic signal control framework that simulates
the driver’s behavior (acceleration/deceleration) continuously in space and
time dimensions. The proposed framework is based on a multi-objective se-
quential decision making process whose parameters are estimated based on
the Bayesian interpretation of probability. Using this interpretation together
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with a novel adaptive cooperative exploration technique, the proposed traffic
signal controller can make real-time adaptation in the sense that it responds
effectively to the changing road dynamics. These road dynamics are simu-
lated by the Green Light District (GLD) vehicle traffic simulator that is the
testbed of our traffic signal control. We have implemented the Intelligent
Driver Model (IDM) acceleration model in the GLD traffic simulator. The
change in road conditions is modeled by varying the traffic demand proba-
bility distribution and adapting the IDM parameters to the adverse weather
conditions. Under the congested and free traffic situations, the proposed
multi-objective controller significantly outperforms the underlying single ob-
jective controller which only minimizes the trip waiting time (i.e., the total
waiting time in the whole vehicle trip rather than at a specific junction).
For instance, the average trip and waiting times are lower ' 8 and 6 times
respectively when using the multi-objective controller.

Keywords:
adaptive optimization, multi-objective optimization, reinforcement learning,
exploration, traffic signal control, cooperative multi-agent system

1. Introduction

In this paper, we focus on computing a consistent traffic signal config-
uration at each junction that optimizes multiple performance indices (i.e.,
multi-objective traffic signal control). Traffic signal control can be viewed
as a multi-objective optimization problem. The multi-objective function can
have a global objective for the entire road network or there may be different
objectives for the different parts of the road network (e.g., maximize safety
especially in residential and schools areas), or even different times of the day
for the same part of the road network.

Construction of a new infrastructure is expensive, thus the generally ac-
ceptable solution is to improve the utilization of the existing resources by
moving towards Intelligent Transportation Systems (ITS) for traffic manage-
ment and control. Traffic control is a set of methods that are used to enhance
the traffic network performance by, for example, controlling the traffic flow
to minimize congestion, waiting times, fuel consumption and avoid accidents.
Traffic control generally includes the following components; controlling the
traffic signals in urban areas, ramp-metering in highways, enforcing variable
speed limits (according to vehicles types), supporting the drivers with route
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guidance based on the up-to-date traffic status using some kind of navigation
systems (e.g., GPS), enforcing overtaking rules, and using driver-assistance
systems (e.g., adaptive cruise control). In this paper, we particularly focus
on controlling traffic signals in urban areas.

Another two important components of the ITS are traffic modeling and
traffic simulation. Traffic modeling is the formulation of rigorous mathemat-
ical models that represent the various dynamics of the traffic system. This
includes drivers’ behavior in acceleration, deceleration, lane changing, phe-
nomena such as rubbernecking, and behavior change under different weather
conditions. Traffic simulation is the virtual emulation of the traffic system
on digital computers. Traffic simulators are used for experimentation and
validation of the underlying traffic models and traffic control mechanisms.

Intelligent traffic control has many challenges that include the continuing
increase in the number of vehicles (it is expected that 70% of the people
worldwide will live in urban areas by 2050 (Pizam, 1999)), the high dynamics
and non-stationarity of the traffic network, and the nonlinear behavior of the
different components of the control system.

Nowadays, the different types of transportation means (specifically ve-
hicles in urban areas) have major problems that governments are facing in
both developing and developed countries. Traffic of vehicles in urban areas,
specifically, has many problems that include increase of traffic congestion,
psychological stress of drivers that affects their behavior leading to a high
rate of accidents, considerable time losses, and a high rate of vehicle emissions
which severely affects the environment. Those problems have a considerable
negative effect on the country economy. Thus, in this paper, the proposed
traffic signal controller tackles most of those problems (e.g., minimizes the
waiting time of vehicles) as will be shown by the performance evaluation in
Section 7.

In 2010, traffic costs (based on time loss and fuel consumption) about
$115 billion in the US based on 439 urban areas (Schrank et al., 2011). In
the same year, 32,885 people died in accidents in the US (U.S. Department of
Transportation, 2012). In Egypt, traffic problems are responsible for more
than 25,000 accidents in 2010 with more than 6,000 deaths per year (CAP-
MAS). Deaths per million driving kilometers in Egypt is about 34 times
greater than in the developed countries (Abbas, 2004). This value is about 3
times greater than countries in the Middle East region (Abbas, 2004). The
authors expect that this value is much worse in 2011-2013 due to the political
upheaval in Egypt.
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Recently, some computer science tools and technologies have been used
to address the traffic signal control complexities. Among these is the MAS
framework whose characteristics are similar in nature to the traffic problem
(Shoham and Leyton-Brown, 2010; De-Oliveira and Camponogara, 2010).
Such characteristics include distributivity, autonomy, intelligibility, on-line
learnability, and scalability. In particular, the formulation of the traffic sig-
nal control problem as a multi-agent reinforcement learning (MARL) config-
uration is very promising (as proposed in (Bazzan, 2009)).

In the current paper, we adopt a MARL framework in a cooperation-
based configuration to comply with the distributed nature and complexity
of the problem. Our work is a significant extension of the framework devel-
oped by Wiering et al. in (Wiering, 2000; Wiering et al., 2004). Wiering’s
controller, namely TC-1, represents a pioneering step in the use of real-time
reinforcement learning framework in modeling traffic signal control. TC-1
outperforms traditional controllers (e.g., random, fixed time, longest queue,
most cars). Moreover, TC-1 has proved its effectiveness and efficiency when
being applied to large scale traffic networks. In contrast, other controllers
based on reinforcement learning, e.g., (Thorpe and Anderson, 1996; Abdul-
hai et al., 2003) suffer from exponential state-spaces when applied to large
scale traffic networks. In addition, many latter researchers, e.g., (Houli et al.,
2010; Kuyer et al., 2008; Schouten and Steingröver, 2007; Iša et al., 2006; Ste-
ingröver et al., 2005), use TC-1 as a benchmark for performance evaluation.
Each of these controllers contribute to TC-1 from a different prospective.
For instance, in (Schouten and Steingröver, 2007), the authors overcome the
partial observability of the traffic state-space, while we assume that the state-
space is fully-observable, i.e., the agent can perfectly sense its environment.

Nevertheless, as will be explained latter, we tackle some problems in
which TC-1 fails to adapt with. This includes: (1) stable adaptation to
the limited-time congestion periods (using Bayesian probability interpreta-
tion), (2) advanced reward formulation to adapt with the continuous-time
continuous-space simulation platform, and (3) using a multi-objective re-
ward formulation in an additive manner to optimize multiple performance
indices.

Moreover, we evaluate the performance of our proposed controller in com-
parison with two adaptive control strategies which are also based on AI
methods: Self-Organizing Traffic Lights (SOTL) (Cools et al., 2008) (that
outperforms a traditional green wave controller) and a Genetic Algorithm
(GA) (Wiering et al., 2004).
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Particularly, our objective in this paper is to develop a traffic control
framework with the following characteristics: (1) inherently distributed through
the use of a vehicle-based multi-agent system; there are two types of agents:
traffic junction agents (active computing agents) which are responsible for
the decision making process (i.e., deciding on the proper traffic signal con-
figuration) according to the information collected from the vehicle agents;
vehicles agents (passive agents) which support the decision making pro-
cess by communicating the necessary information to the junction agents, (2)
online sequential decision making framework where decisions are taken in
real-time for signal splitting based on multiple optimization criteria; the core
of the applied mechanism is based on Dynamic Programming (DP) which
is very-well suited for sequential decision making tasks; the real-time opti-
mization and decision making is done incrementally by integrating the online
learning with DP through the use of reinforcement learning, (3) effectively
and efficiently handle the inherent complexity of the problem, the uncertain-
ties involved, the incompleteness of information, the absence of a rigorous
modeling of the traffic volume and the general dynamics: through the use
of stochastic and statistical tools to predict the unknown parameters and
provide an up-to-date model of the current traffic conditions, (4) adaptive
system in the sense that it responds effectively to the road dynamics (vari-
ations in traffic demand, changing weather conditions, etc.): through the
use of a Bayesian approach for estimating the parameters of the underlying
Markov Decision Process (MDP) and the use of an adaptive cooperative hy-
brid exploration technique, and (5) higher confidence in the validity of the
proposed traffic signal controller: through the use of a more realistic sim-
ulator as a testbed that is achieved by implementing the IDM acceleration
model (Treiber et al., 2000) in the GLD vehicle traffic simulator (Wiering
et al., 2004); moving from the unrealistic discrete-time discrete-space simu-
lation platform to a continuous-time continuous-space one.

The discrete-time discrete-space simulation platform was unrealistic in
the sense that the first waiting vehicle jumps once the traffic signal turns
green. Now, by applying the more realistic IDM acceleration model, the
vehicle takes the normal time to decelerate when a traffic signal turns red
and accelerates back again to cross the junction when the signal turns green.
This behavior, on the other side, causes some kind of sign oscillation when
being applied on the underlying RL model as will be shown later in Section
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4 (which we called the Zeno phenomena 2) which results from the very slow
acceleration of back vehicles when the traffic signal is just turning green.

Preliminary results of this work have been published in (Khamis et al.,
2012a,b; Khamis and Gomaa, 2012). In this paper, we provide a more de-
tailed description and improvements on the multi-objective function. Such
improvements boost the performance of the multi-objective controller, par-
ticularly when being compared to the underlying single objective one. In
addition, we present a novel cooperative hybrid exploration that is more
adaptive to the changing dynamics in road conditions, i.e., improves the trip
waiting time of vehicles during transient periods. We also present a survey
of the state-of-the-art work.

The remaining part of this paper is organized as follows. The related work
of urban traffic signal controllers is discussed in Section 2. A background
on the adopted traffic signal control and simulation models is presented in
Section 3. The proposed framework including the improvements on the traffic
signal control and simulation models is presented in Section 4. Traffic non-
stationarity is tackled by two models: MDP parameter estimation using the
Bayesian probability interpretation and a novel adaptive cooperative hybrid
exploration technique. These two models are presented in Section 5. Our
multi-objective RL traffic signal control framework is discussed in Section 6.
Section 7 presents the experiments conducted under this framework. This
section includes the results of the experiments, discussion about these results,
and how those results can be validated. Finally, Section 8 concludes the paper
and proposes some directions for future work.

2. Related Work

There have been several approaches proposed in the literature for traffic
signal control. The two broad classes of these controllers are: traditional
control paradigms and adaptive control paradigms. On the one hand, the
simplest intuitive type of traffic control is to allow every traffic direction to
pass for a fixed amount of time. This of course ignores the dynamics and
the high variability of the traffic network. Thus, this strategy can result
in very poor utilization of the traffic system and inefficient usage of the
available resources. On the other hand, traffic signal controllers based on

2A Zeno phenomena occurs due to the infinitesimal motion of a particle continuously
within the same state.
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robust models, e.g., petri-nets (Febbraro et al., 2004; List and Cetin, 2004),
Model Predictive Control (MPC) (De-Oliveira and Camponogara, 2010; Lin
et al., 2011), etc., are hard to design and require a complete match with
the actual traffic network dynamics for optimal traffic signal control. In
particular, as mentioned in (Rezaee et al., 2012), any uncertainty or mismatch
in the network model will result in a suboptimal performance of the MPC.
Hence, these models are rigid and non-adaptive to non-modeled variations.

Some traffic signal controllers are based on the dynamic programming
algorithmic paradigm, e.g., (Heung et al., 2005; Sen and Head, 1997). DP
is inherently a paradigm for sequential decision making hence it is very well
suited to the nature of traffic signal control. However, most traffic signal
controllers based on DP are applied on an isolated junction, thus it does not
take into account the inter-dependability between the different parts of the
traffic network. In addition, most traffic prediction is based on historical
traffic data that is taken in the same time of the day during which traffic is
being controlled, e.g., (Sen and Head, 1997).

2.1. AI-Based Traffic Signal Controllers

Modern traffic signal controllers tend to be more adaptive to the current
traffic conditions than traditional controllers (e.g., fixed-time controllers).
That is if a change occurs in the network dynamics (due to accidents, rush
hours, etc.) those traffic signal controllers change accordingly the traffic sig-
nal configuration by the way that optimizes the various performance indices
(e.g., waiting time, queue lengths, etc.).

These controllers are mainly based on Artificial Intelligence (AI) ap-
proaches, specifically based on Machine Learning (ML) techniques. There
are two broad classes of the ML techniques; parametric and non-parametric.
On the one hand, non-parametric ML techniques can be used to implicitly
capture the control model from the training data. On the other hand, para-
metric ML techniques find the optimal estimated value for the control model
parameters (e.g., cycle time, offsets, splits, etc.) based on the training data.

For instance, parametric learning models are robust in the sense that
there is no need for a complete mathematical model of the environment.
Such controllers include artificial neural networks, e.g., (Smith and Chin,
1995; Srinivasan et al., 2006), fuzzy logic, e.g., (Gokulan and Srinivasan,
2010; Wenchen et al., 2012), evolutionary algorithms, e.g., (Lertworawanich
et al., 2011; Sánchez-Medina et al., 2010). However, most of these approaches
have the same problem of being only applied on small scale traffic networks.
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Moreover, most controllers are hard to be applied on large scale traffic net-
works due to computational space and time constraints.

Generally, most of the previous work that is based on ML paradigms are
non-adaptive in the sense that the dynamics of the environment is assumed to
be non-changing (i.e., stationary). Particularly, after reaching steady state,
the above learning algorithms can effectively converge to reasonable optimal
configuration. However, if the road conditions change (due to rush hours,
weather conditions, etc.), these methods fail to adapt to the new conditions,
hence the performance indices might overshoot. In our traffic signal con-
trol framework, we handle the traffic non-stationarity using: (1) Bayesian
probability interpretation for estimating the parameters of the MDP (this
estimation was found to be more stable, robust, and adaptive to the chang-
ing environment dynamics), and (2) a novel adaptive cooperative exploration
technique. We discuss these approaches in details in Section 5.

2.2. RL-Based Traffic Signal Controllers

The application of RL in the context of traffic signal control is pioneered
by Thorpe and Anderson (Thorpe and Anderson, 1996). This approach is
based on a State-Action-Reward State-Action (SARSA) RL algorithm. This
approach is based on a junction-based state-space representation which rep-
resents all possible traffic configurations around a junction. In particular,
each junction learns a Q-value that maps all possible traffic configurations to
total waiting times of all vehicles around the junction. As mentioned in (Ste-
ingröver et al., 2005), this representation quickly leads to a very large state-
space, because there are many possible configurations of vehicles waiting in
the ingoing lanes of any junction. Most RL-based traffic signal controllers
proposed in the literature have junction-based full state representation (e.g.,
(Abdulhai et al., 2003; El-Tantawy and Abdulhai, 2012; Medina and Beneko-
hal, 2012)). This suffers from the curse of dimensionality, the state-action
space is estimated at the size of 10101 (as mentioned in (Prashanth and Bhat-
nagar, 2011)).

In our work, we adopted a different approach that is a vehicle-based state-
space representation (Wiering, 2000). In this representation, the number of
states will grow linearly in the number of lanes and vehicles positions and
thus will scale well for large networks. The traffic signal decision is made
by combining the estimated gain (e.g., waiting time) of all vehicles around
a junction. Note that each vehicle does not have to represent its estimated
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gain itself (this can be done by the traffic junction) but the representation is
vehicle-based.

In (El-Tantawy and Abdulhai, 2012; Medina and Benekohal, 2012), the
authors proposed Q-learning algorithms for traffic signal control with ex-
plicit coordination mechanisms among neighboring junctions. However, both
works are based on junction-based state-space representation which consumes
large space as discussed earlier. In addition, the latter work (Medina and
Benekohal, 2012) uses the max-plus algorithm which is computationally de-
manding.

These approaches are based on model-free RL algorithms (e.g., SARSA,
Q-learning) in which the learning process is not guided by a state transition
probability model. Although less computations per traffic signal decision is
required by model-free RL methods relative to model-based ones, the conver-
gence time is much smaller in model-based RL methods because the learning
process is guided by a state transition probability model. The model-free
RL methods may be more convenient in some domains, e.g., robotics ap-
plications where the computation and power capabilities of robots may be
limited, while the number of iterations required for reaching the optimal pol-
icy is not demanding in applications lacking real-time decision making, e.g.,
mine sweeping using robots. Hence, we find that model-based RL methods
(e.g., value iteration) are more convenient for traffic signal control in which
investing more computations per traffic signal decision is not a demand-
ing issue (considering the computation capabilities of junction agents) while
reaching faster to the optimal learned values of traffic signal configurations
is demanding in real-time traffic signal control.

In this paper, we adopted the version of model-based RL presented by
Wiering in (Wiering, 2000). This particular version proves its effectiveness
when being applied to large scale traffic networks.

In (Kuyer et al., 2008), the authors extended Wiering RL model for traffic
signal control (Wiering, 2000) by using max-plus and coordination graphs.
This work implements an explicit coordination mechanism between the learn-
ing junction agents. The max-plus algorithm is used to estimate the optimal
joint action by sending the locally optimized messages between neighboring
junctions. However, as mentioned in (El-Tantawy and Abdulhai, 2012), the
max-plus algorithm is computationally demanding and therefore the agents
report their current best action at anytime even if the action found so far is
sub-optimal.

In (Salkham et al., 2008), the authors proposed a collaborative RL ap-
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proach using a local adaptive round robin phase switching model at each
junction. Each junction collaborates with neighboring junctions in order
to learn appropriate phase timing based on traffic patterns. In (Richter
et al., 2007), the authors exploited the natural actor-critic algorithm which
is based on four RL methods, i.e., policy gradient, natural gradient, tempo-
ral difference, and least-square temporal difference. The authors extended
the state-space of the agent to include the state of other agents to control
a 10 × 10-junction grid. In (Arel et al., 2010), a distributed traffic signal
control method using ML-based neural networks have been proposed. In this
approach, RL is used to control only the central junction in a network of 5
junctions while the other 4 junctions use the longest-queue-first algorithm
and collaborate with the central agent by providing it with the local traffic
statistics. However, due to the large state-space of junction-based methods,
neural networks are used for better searching the state-space.

2.3. Wiering-Based Traffic Signal Controllers

For testing and experimentation of our traffic signal control, we use the
GLD traffic simulator (Wiering et al., 2004), see Fig. 1. The GLD simula-
tor was initially based on a very simple discrete-time discrete-space model
of traffic dynamics. Three previous extensions to the GLD traffic simulator
have been implemented with simple acceleration models. The first extension
is due to Cools et al. (Cools et al., 2008) that proposes a simple rule-based
acceleration model based on the distance to the front vehicle. The second
extension is due to Schouten and Steingröver (Schouten and Steingröver,
2007) that allows the vehicles to change their speed following either a Uni-
form or a Gaussian distribution. The third extension is due to Kuyer et al.
(Kuyer et al., 2008) who implement the same technique of Gaussian distri-
bution using different values of speed thresholds. All the three extensions
are inherently discrete with respect to both the time and space domains.

An important concern in any traffic simulator is the generation of popu-
lations of vehicles at different parts of the traffic network (i.e., simulating the
traffic demand). Two extensions have been added to the GLD in this context.
Escobar et al. (Escobar et al., 2004) assume fixed generation frequency over
extended periods of time, the generation frequency can be changed over non-
overlapping intervals, the schedule of such change is specified in an XML file.
Steingröver et al. (Steingröver et al., 2005) implement the same technique
through a screen graphical interface.
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Figure 1: GLD vehicle traffic simulator: traffic network with 12 edge nodes and 9 traffic
signal nodes.

Two extensions have been added to the GLD to achieve traffic green
waves. The first is implemented by Escobar et al. (Escobar et al., 2004).
This work proposes a very simple rule-based method for implementing green
waves which depends on successive green signals over consecutive junctions
with offsets. These offsets are determined based on the average speed of
vehicles between the junctions. This is implemented over fixed periods of
time. Since only the two opposite directions of the main road can have green
waves simultaneously, traffic in the side roads will be delayed even when
the traffic flow on the main road is very low. The second extension was
implemented by Cools et al. (Cools et al., 2008). They propose a more
robust rule-based technique for implementing green waves. The integrity of
a platoon of vehicles is achieved by preventing the tail of the platoon from
being cut (when switching the traffic signal), while allowing the division of
long platoons (in case there is a demand on the intersecting lanes) in order
to prevent platoons from growing too much.

Our traffic signal control framework handles the drawbacks of the previ-
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ously mentioned extensions to the GLD: acceleration model, traffic demand
simulation, green wave implementation, etc. as will be shown in the proposed
framework Section 4.

2.4. Multi-Objective Based Traffic Signal Controllers

To the best of our knowledge, few learning-based approaches are existing
for multi-objective urban traffic signal control, e.g., (Lertworawanich et al.,
2011). On the one hand, the majority of these methods are based on ei-
ther neuro-fuzzy or Multi-Objective Genetic Algorithms (MOGA). However,
as mentioned in (Faye et al., 2012), the use of fuzzy logic is not sufficient
to represent the real-time traffic uncertainties. Also, neural networks and
genetic algorithms require many computations and their parameters are dif-
ficult to be determined. In addition, as mentioned in (Liu, 2007), traffic
signal control methods based on fuzzy logic are more suitable to control traf-
fic at an isolated intersection. Also, evolutionary algorithms such as genetic
algorithms will spend huge time to converge to the optimal traffic signal
decision for large scale networks. On the other hand, some traffic signal con-
trollers that are junction-based, e.g., (Abdulhai et al., 2003) implement RL
models in which the reward is a function in both the total delay and the
queue length. However, as mentioned previously, junction-based methods
suffer from exponential state-space.

In (Wiering, 2000), the author proposes two controllers called TC-2 and
TC-3. The number of vehicles waiting in the queue at the next traffic signal
is considered in the Q-function. The state representation is the same as in
TC-1 (the original model of Wiering). However, as mentioned in (Steingröver
et al., 2005), the proposed Q-function leads to an unusual adaptation of the
real-time dynamic programming update in Eq. 1. In addition, the Q(s, a)’s
usually will not converge but instead keep oscillating between different values.

Houli et al. (Houli et al., 2010) present a multi-objective RL traffic signal
control model. However, the traffic adaptation is done offline by activating
one objective function at a time according to the current number of vehicles
entering the network per minute.

Steingröver et al. (Steingröver et al., 2005) present two traffic signal
controllers, namely, State Bit for Congestion (SBC) and Gain Adapted by
Congestion (GAC). Traffic junctions take into account congestion informa-
tion from neighboring junctions. This extension allows the agents to learn
different state transition probabilities and value functions when the outgoing
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lanes are congested (i.e., optimizes the flow rate while optimizing the pri-
mary objective; trip waiting time). However, adding a new bit to indicate
the degree of congestion in the next lane increases the state-space and slows
the learning process. On contrary, in our model, the state-space representa-
tion is the same in size as the underlying traffic signal controller (Wiering,
2000). GAC (Steingröver et al., 2005) does not learn anything permanent
about congestion, also this approach can not be easily generalized. In the
next Section 3, we present the underlying traffic signal control and simulation
models for our multi-objective traffic signal control framework.

3. Background: Traffic Signal Control and Simulation Models

3.1. Wiering RL Traffic Signal Control Model

In (Khamis et al., 2012a,b; Khamis and Gomaa, 2012), we adopted the
RL model developed by Wiering (Wiering, 2000) for traffic signal control.
Each junction is controlled by an active3 intelligent agent that learns a policy
for signal splitting through a guided trial-and-error life interaction process
with the environment to online optimizing some criteria (e.g., minimizing the
waiting time of vehicles). This approach is vehicle-based, that is, the state of
the system is local and microscopic.

In Wiering’s approach, the state of the vehicle at a particular junction
consists of the following pieces of information: (1) the traffic light of the
lane in which the vehicle is moving or waiting, denoted tl, (2) the position
in which the vehicle is currently at, denoted p, and (3) the destination to-
wards which the vehicle is traveling, denoted des. In a real-world application,
drivers/vehicles can send the information required by the junction controller
agent (i.e., position and destination) for the junction to estimate the vehicle
gain from the traffic signal decision. This can be achieved using some kind
of sensors (e.g., sensors in smart phones) through a Vehicle-to-Infrastructure
(V2I) communication protocol.

This approach is essentially a model-based value-iteration technique where
the state transition probability is continually estimated to guide the learning
and optimization process. The state transition probability is represented by
a lookup table Pr(s, a, s′) where a is the action of the traffic signal (i.e.,

3Despite we consider the junction as the active agent and the vehicle as the passive
agent, our model is still vehicle-based not junction-based as the state definition is on the
vehicle level.
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red or green) that causes the vehicle to move from state s to the next state
s′. These probabilities are estimated based on the frequentist interpretation
of probability: Pr(s, a, s′) = C(s, a, s′)/C(s, a) where C(s, a, s′) counts the
number of transitions (s, a, s′) and C(s, a) counts the number of times a
vehicle was in state s and action a was taken. In (Khamis et al., 2012a), we
used the Bayesian probability interpretation to estimate the parameters of
these probabilities. This estimation was found to be more stable, robust, and
continuously adaptive to the changing environment dynamics. We discuss
this approach in Section 5.

The original model (Wiering, 2000) optimizes the cumulative waiting time
of all vehicles till arriving at their destinations. Thus, the Q-function repre-
sents the estimated waiting time for a vehicle at state s until it arrives to its
destination in case the action of the current traffic signal is a and is given
by:

Q(s, a) =
∑
s′

Pr(s, a, s′)(R(s, a, s′) + γV (s′)), (1)

where γ is a discount factor (0 < γ < 1) that discounts the influence of the
previously learned V -values and ensures that the Q-values are bounded. The
reward function R(s, a, s′) is the immediate scalar reward. In the single objec-
tive controller proposed in the original work (Wiering, 2000), R(s, a, s′) = 1
in case the vehicle waits at the same position, otherwise equals 0. In (Khamis
et al., 2012b; Khamis and Gomaa, 2012), we proposed a more elaborate de-
sign for the reward function that is well-suited for a multi-objective traffic
signal control framework. The proposed multi-objective reward function is
discussed in Section 6.

The V -function represents the estimated average waiting time for a vehicle
at state s till leaving the traffic network regardless the current traffic signal
action and is given by:

V (s) =
∑
a

Pr(a|s)Q(s, a). (2)

The controller at each junction sums up the gains Q(s, red)−Q(s, green)
of all vehicles waiting at the current junction and chooses the traffic signal
configuration (consistent green lights on all directions of the junction) with
the maximum cumulative gain. In the proposed multi-objective traffic signal
control framework, we adopt the same gain definition of vehicles.
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The possible traffic signal configurations (i.e., possible phases) represent
the consistent green lights on all directions of the junction that do not cause
any possible accidents between the crossing vehicles. Consider a junction
controlling the traffic between 4 intersecting roads. Each road consists of 4
lanes, in which the ingoing lanes per each road are one lane for turning left
and one lane for going straight or turning right. According to this setting,
there exist 8 possible traffic signal configurations4 (4 possible configurations
for the traffic signals of each road to be green for left and straight/right
directions and 4 possible configurations for the traffic signals of each opposite
roads to be green for left and straight/right directions).

For a fixed time controller, all possible phases should at least be green
once within a cycle. In our multi-objective framework, we do not estimate the
optimal phase length, but rather, at each time step the junction agent chooses
(based on the current traffic situation) either to extend the current phase or
to begin another possible traffic signal configuration. In addition, the decision
is based on all vehicles in the lane (i.e., not only the vehicles queued at the
traffic signals), this setting is much consistent with the nature of the multi-
objective function, i.e., formulation and evaluation of some objectives, e.g.,
average trip time, average speed of vehicles, etc.

3.2. GLD Traffic Signal Simulation Model

In order to examine the proposed traffic signal control framework, some
experimentation platform is needed, that is a traffic simulator. In our work,
we chose to extend the moreVTS vehicle traffic simulator (Cools et al., 2008)
that is based on the GLD traffic signal simulation platform (Wiering et al.,
2004). This is due to the following reasons: (1) the GLD is a widely used
open source traffic simulator, e.g., used by (Cools et al., 2008; Steingröver
et al., 2005; Kuyer et al., 2008; Prashanth and Bhatnagar, 2011), etc., (2)
the ability to compare the proposed traffic signal controller with other major
traffic signal controllers implemented over the GLD, (3) collecting statistics
from a set of performance indices that are already available in the GLD
with the ability to add new performance indices, and (4) the visual ability to
edit/create traffic networks and schedule traffic demands through a graphical
interface, see Fig. 1.

4Note that the 8 possible traffic signal configurations per junction in the adopted model
differ from the number of phases at an ordinary traffic signal, i.e., green-amber-red.
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4. Proposed Framework

Despite the aforementioned capabilities of the GLD, it still contains severe
drawbacks resulting from oversimplifications that we fixed in our previous
work. We briefly mention our fixes here, and refer the reader to the original
papers for more details (Khamis et al., 2012a), (Khamis et al., 2012b), and
(Khamis and Gomaa, 2012).

4.1. Continuous-Time and Continuous-Space Simulation Platform

The GLD is a discrete-time discrete-space simulation platform that is
based on cellular automata in which each road is represented by discrete cells.
A road cell can be occupied by a vehicle or can be empty. In (Khamis et al.,
2012a), we implemented the more realistic IDM acceleration model (Treiber
et al., 2000) that is used to simulate, in continuous-time and continuous-
space, the acceleration and deceleration of vehicles. The vehicle acceleration
dv/dt depends on: (1) the current velocity5 v, (2) the distance to the front
vehicle s, and (3) the difference in velocity ∆v that is positive when ap-
proaching the front vehicle; the acceleration is given by:

dv

dt
= a
[
1−

( v
v0

)δ
−
(s∗
s

)2]
,

s∗ = s0 +min
[
0,
(
vT +

v∆v

2
√
ab

)]
.

(3)

The acceleration model consists of two terms: the desired acceleration
when the road is free a[1− ( v

v0
)δ], and the braking deceleration when there is

a front vehicle −a[( s
∗

s
)2].

Accordingly, there are 3 clocks in our traffic signal control framework
that need to be synchronized: (1) the IDM modeler time, (2) the traffic
signal controller time, and (3) the GLD simulator time. The 3 clocks are
synchronized every δt as follows. First, the IDM modeler updates the state of
all vehicles in the entire traffic network where the new positions are calculated
as follows:

speednew = speedold + accelerationIDM × δt,
positionnew = positionold − speednew × δt.

(4)

5In the rest of the paper, we refer to the vehicle absolute velocity by the vehicle speed
which is always positive.
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Note that in the GLD, the vehicles positions values are decreasing as vehicles
move from its source nodes towards the junctions. This clarifies the negative
sign in the position update, Eq. 4. Afterwards, the simulator gathers all the
needed statistics from the traffic network such as the average waiting time,
the average queue length, etc. The controller updates the state transition
of each vehicle and recalculates the Q(s, a)’s and V (s)’s. Then the simula-
tor updates the traffic network screen visualization. Afterwards, the traffic
signal controllers decide on the new actions at all junctions of the network
by calculating how every traffic signal should be switched. The new traffic
signal configurations are applied by switching the traffic signals to their ap-
propriate values. Finally, the simulator schedules the next state for the next
time step (e.g., new vehicles join the network following the scheduled traffic
demand).

4.2. IDM Impact on the RL Traffic Signal Control Model

In (Khamis and Gomaa, 2012), we analyzed and fixed some crucial prob-
lems that appeared in the original RL traffic signal control model (Wiering,
2000), particularly when applying the IDM acceleration model. As a result of
the control being still discrete in nature, many IDM state transitions (poten-
tially infinite) correspond to one state transition with respect to the control
(the controller perceives the lane as an extension of discrete cells whereas the
IDM views it as a continuous stretched line - recall that the vehicle position
is part of the controller state definition).

As a result, some ambiguity appears in the definition of the reward func-
tion R(s, a, s′). In particular, if the reward value is depending on the distance
traveled by the vehicle, then there will be different immediate reward values
for the same controller state transition. We solved this problem by averaging
the reward values gained over time.

Another issue is the sign oscillation problem (a Zeno phenomena) that
results from the infinitesimally slow acceleration of back vehicles when the
traffic signal is just turning green. In this case, the Q(s, green)’s of those
stationary vehicles will increase that decreases the cumulative gain and ac-
cordingly forces the traffic signal to switch back to red (too early) before any
vehicle can cross the junction. We solved this issue by giving those station-
ary vehicles some penalty smaller than the one given when the traffic signal
is red, e.g. R(s, a, s′) for back stationary vehicles when the signal is green
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equals 0.3 instead of one 6.

4.3. Traffic Demand Probability Distributions

The traffic demand in the GLD traffic simulation model (Wiering et al.,
2004) is implemented by generating a uniform random number every simu-
lation time step and checking its value against a fixed traffic demand rate
∈ [0, 1]. In order to allow for variability and non-stationarity, we have im-
plemented in the GLD varying probability distributions of the inter-arrival
times of the input vehicles in (Khamis et al., 2012a).

4.4. Exploration Policy

In the underlying traffic signal control model (Wiering, 2000), a random
traffic signal configuration can be chosen with a small probability ε = 0.01
for the exploration of the state-action space. In (Khamis and Gomaa, 2012),
we also used ε-exploration, though we found that it is better to start initially
with a high exploration rate (where there is still no much knowledge about
the optimal gain values to be exploited) and decrease the exploration rate
gradually in time; the exploration rate was given by εt = exp(−t/kt) where
t is the current simulation time step and kt is the Boltzmann temperature
factor that decays by time till being fixed at the value of 1. In the current
paper, we propose a novel hybrid exploration technique that uses softmax
exploration to better respond to transient periods (e.g., due to congestion at
rush hours). This exploration technique is discussed in details in Section 5.

4.5. Fixing the Next States Definition in the GLD

The implementation of the underlying traffic signal control model loops
on all the possible next states s′ according to the free positions ahead of a
vehicle at state s in the current time step. Particularly, this implementation
assumes the next states by discretizing the free distance between the vehicle
and the front one. Thus, the sum of the transition probabilities of these
next states is not a must equal to 1 because the probability should be cal-
culated and updated based on the actually experienced next states. Hence,
this implementation is improper and in (Khamis and Gomaa, 2012) we in-
stead loop on all the next states that are actually experienced (e.g., by other

6Note that all the reward values are then scaled (multiplied by 10) for better discrimi-
nation between the reward values in case the traffic signal is red or green.
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vehicles) starting from the same state s. The sum of these state transition
probabilities equals 1.

4.6. New Performance Indices

The main performance measure in the GLD depends on the average delay
of the vehicles. The junction delay of a vehicle is calculated as follows:

Junction Delay = (Time Step the Vehicle Crosses the Junction

− Time Step the Vehicle Joins the Junction Lane)

− (Lane Length/Lane Maximum Speed).

(5)

In (Khamis et al., 2012b), we defined the proper junction waiting time of a
vehicle as follows:

Junction Waiting Time = Time Step the Vehicle Crosses the Junction

− Time Step the Vehicle Joins the Junction Waiting Q,
(6)

where joining the junction waiting queue is counted once the vehicle speed
drops beyond a specific threshold, 0.36 km/h 7 (Khamis and Gomaa, 2012).

In (Khamis et al., 2012b), we criticized the inefficiency of the GLD per-
formance indices. The original average trip waiting time (ATWT) proved to
be insufficient because all vehicles not arrived yet to their destinations (for
any reason, e.g., due to congested traffic) are not incorporated in the statis-
tics. We include all vehicles even those that have not yet arrived to their
destinations by adding for those vehicles the expected trip waiting time V (s)
to the total waiting time they have experienced so far. The total waiting time
that a vehicle has experienced equals the summation of the waiting times at
the junctions that the vehicle has already crossed in Eq. 6. We call this
policy the co-learning technique for calculating the performance indices. We
have also implemented the co-learning average trip time (ATT). For more
details and mathematical derivations of the co-learning performance indices,
the reader is referred to (Khamis et al., 2012b). Despite we have implemented
as well the co-learning average junction waiting time (AJWT) version, it is

7In the traffic simulator available at www.traffic-simulation.de which applies the IDM
acceleration model, the minimum value of the desired velocity v0 in the “traffic light”
scenario is 1 km/h. Thus, we set the stop speed to be lower than half this value (to be
equal to 0.36 km/h).
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not logically meaningful as the co-learning technique for calculating the per-
formance indices is more convenient to the trip-based statistics (using the
expected remaining value till the end of the trip).

In the original GLD, the vehicles waiting in edge nodes (due to overfull
ingoing lanes) do not enter the traffic network and consequently are not in-
corporated in many performance measures (e.g., ATWT, ATT, etc.). We
solved this problem by rejecting the vehicles that are queued in edge nodes
and use the percentage of rejected vehicles (Khamis et al., 2012b) as a more
reasonable performance index. Moreover, we added the relative throughput
performance index (Khamis et al., 2012b) in the GLD. This performance in-
dex equals the total number of arrived vehicles divided by the total number
of entered vehicles. In addition, we added the average speed performance in-
dex (Khamis et al., 2012b). This performance index equals the total distance
traveled by all vehicles (either have arrived or have not arrived yet) divided
by the total time spent in the network.

In order to evaluate the performance of the green wave objective, we
added the average number of trip absolute stops performance index (Khamis
and Gomaa, 2012). Once the vehicle joins the waiting queue (i.e., its speed
drops beyond 0.36 km/h, as mentioned earlier), we count 1 vehicle stop, and
once the vehicle joins the next waiting queue after crossing the current junc-
tion, this count will be 2 vehicle stops. Since the vehicle stops increase the ve-
hicle emission and oil consumption (as mentioned in (Houli et al., 2010)), we
added the average number of vehicles trip stops performance index (Khamis
and Gomaa, 2012) to evaluate the performance of the fuel consumption ob-
jective. This performance index equals the sum of all vehicles stops in the
whole trip divided by the number of arrived vehicles.

5. Handling Traffic Network Non-Stationarity

5.1. MDP Parameters Estimation Using Bayesian Probability Interpretation

We use the Bayesian probability interpretation for estimating the un-
known parameters of the MDP probabilities instead of the frequentist inter-
pretation that was originally proposed in (Wiering, 2000). In our approach,
the current estimation becomes the prior for the next time step. This es-
timation is more stable and more adaptable to the changing environment
dynamics. That is if a change occurs in the network dynamics (due to ac-
cidents, rush hours, etc.) the controller using this probability estimation
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can handle the traffic efficiently by the way that optimizes the various per-
formance indices (e.g., waiting time, queue lengths, etc.) in the congested
periods. The idea behind this state transition probability estimation is based
upon the simple Bayes’ rule: Let A and B be two events, then the posterior
density of A given B has the following formula:

Pr(A|B) = Pr(B|A) Pr(A)/Pr(B). (7)

Let P be a random variable representing an estimator of some unknown
parameter. In the proposed traffic signal control framework, such a parame-
ter can be either (1) one of the parameters of Pr(a|s) which is the posterior
probability of taking action a given state s, or (2) one of the parameters of
Pr(s′|s, a) which is the transition probability of being in the next state s′ given
the state/action pair (s, a). Following, we give an example for illustration.
Fix some state s, then Pr(a|s) has one parameter P for the probability of a =
RED. For every time index t, let It = {j ≤ t : state s is occupied at time j}.
For every n = |It| ∈ N, define the Bernoulli random variable Xn as follows:

Xn =

{
1 a = RED at time k = max It,

0 o.w.,
(8)

That is X̄n is a sequence of Bernoulli random variables defined at the time
indices where the state s is occupied by a vehicle. When Xn+1 is defined, we
estimate P by recursively applying the Bayesian inference rule as follows:

Posterior(n+ 1) =
Likelihood(n+ 1)Prior(n+ 1)

Normalizing Factor(n+ 1)
. (9)

We take Prior(n + 1) = Posterior(n). Let X̄n+1 = (X1, . . . , Xn+1). Then
we have

Pr(Pn+1|X̄n+1) =
Pr(X̄n+1|Pn+1) Pr(Pn+1)

Pr(X̄n+1)

= η Pr(X̄n+1|Pn+1) Pr(Pn+1|X̄n),

(10)

where η is the normalization factor. Solving the above recursive equation
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with the assumption that X̄n+1 are independent random variables,

Pr(Pn+1|X̄n+1) = α

n+1∏
i=1

Pr(X̄i|Pn+1) Pr(Pn+1|X̄0); Pr(Pn+1|X̄0) = 1

= α

n+1∏
i=1

i∏
j=1

Pr(Xj|Pn+1) = α

n+1∏
i=1

i∏
j=1

P
Xj

n+1(1− Pn+1)(1−Xj).

(11)
For an easier differentiation, we find ln Pr(Pn+1|X̄n+1) :

ln Pr(Pn+1|X̄n+1) = lnα +
n+1∑
i=1

ln(
i∏

j=1

P
Xj

n+1(1− Pn+1)(1−Xj))

= lnα +
n+1∑
i=1

i∑
j=1

[
Xj lnPn+1 + (1−Xj) ln(1− Pn+1)

]
.

(12)
Differentiating with respect to Pn+1 and equating to 0, where ln Pr(Pn+1|X̄n+1)
and consequently Pr(Pn+1|X̄n+1) are maximum:

∂ ln Pr(Pn+1|X̄n+1)

∂Pn+1

=
n+1∑
i=1

i∑
j=1

[ Xj

Pn+1

− (1−Xj)

(1− Pn+1)

]
=

n+1∑
i=1

i∑
j=1

Xj −
n+1∑
i=1

i∑
j=1

Pn+1

=
n+1∑
i=1

i∑
j=1

Xj −
Pn+1(n+ 1)(n+ 2)

2

= 0.

(13)

The posterior probability Pn+1 as a function of n+ 1 is given by:

Pn+1 =
2

(n+ 1)(n+ 2)

n+1∑
i=1

i∑
j=1

Xj. (14)

Assuming that Pn = P , we get the following formula for the estimator P :

P =
2

n(n+ 1)

n∑
i=1

i∑
j=1

Xj. (15)
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5.2. Adaptive Cooperative Hybrid Exploration

In this paper, we propose a hybrid exploration technique based on both
ε-exploration and softmax exploration. In softmax exploration, the traffic sig-
nal decision is chosen proportionally to the gain values: exp(gi)/

∑
gi
exp(gi),

where gi is the cumulative gain of the vehicles in the lanes of the traffic sig-
nal configuration number i. This hybrid exploration is more adaptive to
the transient periods, particularly when a main road has very high conges-
tion for some period of time (e.g., due to accidents or rush hours) while the
side roads have much lower traffic demand. In this case, using ε-exploration
solely, leads to semi-permanent domination of the main road that causes long
waiting times to the vehicles in the side roads. Thus, we propose at every
time step each junction decides whether to use the network-level “default”
ε-greedy exploration (ε = 0.01 as proposed in (Wiering, 2000)) or to use
softmax exploration. We found that the softmax exploration gives better
trip waiting time results in case the gain of some traffic signal configuration
exceeds the gain of any other configuration by 20% of its value (i.e., dom-
ination that might lead to blockage of the other possible configurations if
ε-greedy exploration is used). This hybrid exploration technique requires an
explicit coordination between a junction agent and its neighboring junctions.
A junction (or one of its direct neighbors) is said to be in a transient state
if the cumulative gain of all vehicles in this junction keeps increasing (or
decreasing) with 10% of its current value for 10 (or more) consecutive time
steps. The cooperation is used to check if some junction is in a transient
state, then this transient state will be most likely transferred soon to some
neighboring junction; thus during this period it is preferable for the junction
to use the softmax exploration.

We have proposed another kind of cooperation in (Khamis and Gomaa,
2012) that depends on transferring the learned Q-values (with some decaying
cooperation factor) from the ingoing lanes of a junction to the outgoing lanes.
This method leads to better performance in the transient period, however, we
find that the steady state is worse. The new cooperative hybrid exploration
technique improves both the transient and steady state periods.

6. Multi-Objective RL model for Traffic Signal Control

As mentioned in (Jin and Sendhoff, 2008), little work has been done in
multi-objective RL with some exceptions, e.g., (Gábor et al., 1998; Mannor
and Shimkin, 2004; Natarajan and Tadepalli, 2005). Thus, the framework
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proposed in this paper is considered a novel contribution to the area of using
multi-objective RL especially in the domain of traffic signal control.

In our model, we had two alternatives for implementing the multi-objective
RL traffic signal control. The first is to use a separate Q-function for each
objective, the second is consolidating all rewards in one Q-function. We
decided to use the second alterative that is more suitable for the vehicle-
based approach where each vehicle has two representative values Q(s, red)
and Q(s, green). In particular, similar to the underlying traffic signal con-
trol model (Wiering, 2000), s is the state of the vehicle and Pr(s, a, s′) is the
state transition probability; both values are the same for the various objec-
tives with respect to the same vehicle. The innovative part in this model
specifically (and in the RL generally) is the design of the reward function.
The consolidated reward values represent the core of the model which lead
to the final estimated gain of every vehicle which affects the decision of the
traffic signal controller.

The proposed multi-objective function is given by:

Q(s, a) =
∑
s′

Pr(s, a, s′)
[(
RATWT(s, a, s′) +RATT(s, a, s′) +RAJWT(s, a, s′)

+ CF (s, a, s′)×RFR(s, a, s′) +RGW(s, a, s′)

+RAA(s, a, s′) +RMS(s, a, s′)
)

+ γV (s′)
]
.

(16)

Let the distance traveled by the vehicle in the current time step be equal
to ∆p (always positive). The first reward represents the ATWT (the same as
the single objective of Wiering’s approach) and is given by: RATWT(s, a, s′)
equals 10 or 3 in case the traffic signal is red or green respectively with
∆p ' 0, otherwise equals 0.

The second reward represents the ATT. In this paper, we improve the
ATT reward function that we previously proposed in (Khamis and Gomaa,
2012) in order to better discriminate the reward values in case the traffic
signal is red or green. For instance, if the vehicle waits at the current position,
i.e., ∆p ' 0 (that leads to higher ATT), then it will be penalized by the
reward value. In main roads, our controller enforces the ATT objective to
dominate by using a stronger reward function: RATT(s, a, s′) = CATT × (1−
2−∆2p). In side roads (e.g., residential areas in which the main objective is to
avoid accidents), the controller uses a weaker ATT reward function: CATT×
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(1 − 2−∆p). CATT equals 10 or -10 in case the traffic signal is red or green
respectively. Since the individual vehicle gain equals Q(s, red)−Q(s, green),
the reward has negative value when the traffic signal is green.

The third reward represents the AJWT. If the vehicle waits at the cur-
rent junction, i.e., tl′ = tl (that leads to higher AJWT), then it will be
penalized by the reward value. The AJWT reward function is given by:
RAJWT(s, green, s′) = 0 in case tl′ 6= tl, otherwise equals 10 (the AJWT will
increase if the current lane has red signal or is congested with green signal).

The fourth reward represents the flow rate (FR) in which we consider the
spatial queuing that considerably affects neighboring junctions performances.
If there is high congestion in the next lane, then the vehicle will be penalized
by the reward value. The FR reward function is given by: RFR(s, green, s′) =
10 in case tl′ 6= tl, otherwise equals 0. Assume the number of blocks 8 taken
by the waiting vehicles in the next lane 9 and the length of the next lane to
be N and L respectively. Let W = N/L, then the Congestion Factor (CF)
is given by (Houli et al., 2010):

CF (s, green, s′) =


0, if W ≤ θ,

10× (W − θ), if θ < W ≤ 1,

2, if W > 1.

(17)

θ is a threshold whose best value equals 0.8 (as mentioned in (Steingröver
et al., 2005)). For instance, if N = 9 meters and L = 10 meters, then
CF (s, green, s′) = 1 (the traffic signal controller try to minimize the FR
when the next lane is congested). If tl′ 6= tl, CF (s, green, s′) will decrease
when the next lane at tl′ is free. In this case, Q(s, green) will decrease
and thus the cumulative gain will increase (recall that a vehicle gain equals
Q(s, red)−Q(s, green)) and accordingly the green phase length will be longer
that allows more traffic to pass through, i.e., increasing vehicles flow rate.

The fifth reward represents achieving a traffic green wave (GW) and is
implemented by checking the following conditions: (1) the current lane is
part of a main road, (2) the current traffic signal is green, and (3) the num-
ber of vehicles within distance ω from the traffic junction is ∈ [1, µ], then,
RGW(s, green, s′) = −10, otherwise equals 0. The best parameters values are

8Like moreVTS (Cools et al., 2008), we set 1 block = 1 meter.
9Such kind of information can be coordinated between the neighboring junctions; each

junction has such information through V2I communication with surrounding vehicles.
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ω = 25 meters (as proposed in (Cools et al., 2008)) and µ = 3 vehicles. Un-
like the original RL model (Wiering, 2000) that considers only the gain of the
waiting vehicles when taking a traffic signal decision, our controller considers
as well the approaching vehicles. In this case, the red signals might switch
to green even before the vehicles reach the junctions creating an emergent
green wave (the vehicles need not to slow down or stop at all). That occurs
due to the increase of Q(s, red) for the approaching vehicles.

The sixth reward represents the accidents avoidance (AA). In this pa-
per, we improve the safety reward function that we previously proposed in
(Khamis and Gomaa, 2012) in order to better discriminate the reward values
in case the traffic signal is red or green. The impact of an accident (i.e., vehi-
cles moving with very slow speed or stationary at a short distance e beyond
a green traffic signal) is propagated to the vehicles crossing the green signal.
In this case, our controller uses a stronger AA reward function regardless
of the road type: RAA(s, a, s′) = CAA × (1/(∆2p + 1)). The best value of
the short distance e beyond the traffic junction is 10 meters (as proposed in
(Gershenson and Rosenblueth, 2009)). In residential and schools areas, our
controller alleviates driver’s aggressiveness by using the following AA reward
function: CAA× (1/(∆p+ 1)). CAA equals 10 or -10 in case the traffic signal
is red or green respectively. This reward function assures that Q(s, green)
will increase at high vehicle speeds that decreases the gain leading the traffic
signal to switch to red (i.e., forces vehicles to decelerate that helps in acci-
dents avoidance in residential and schools areas). Note that in the simulation
environment, the IDM acceleration model is a collision-free model (Treiber
et al., 2000). Thus, we cannot measure efficiently the performance of the AA
objective, e.g., by using number of accidents performance index. However,
other performance indices still can give good indication, e.g., average speed
of vehicles.

The seventh reward represents forcing vehicles to move within moderate
speed (MS) range of minimum fuel consumption. In this paper, we im-
prove the fuel consumption reward function that we previously proposed in
(Khamis and Gomaa, 2012) in order to better discriminate the reward values
in case the traffic signal is red or green. If the distance traveled per time
step (resulting in the motion from a controller state s to a next state s′) is
smaller or greater than the moderate speed limits (for main roads is 60-70
km/h and for side roads is 55-70 km/h), we set RMS(s, a, s′) to CMS or -CMS

respectively, otherwise equals 0. CMS equals 10 or -10 in case the traffic signal
is red or green respectively.
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7. Experimentation

7.1. Symmetric Network: horizontal main roads with vertical side roads

We use the traffic network in Fig. 1 for experimentation. This network
consists of 12 edge nodes and 9 traffic signal nodes. There are 6 roads each of
2 lanes in each direction. The 3 horizontal roads are the main roads (where
there is higher possibility of traffic green wave creation) each of length equals
1120 meters (2 entry links each of 300 meters, 2 links between intersections
each of 200 meters, and 3 junctions each of 40 meters) and the 3 vertical roads
are the side roads each of length equals 920 meters (2 entry links each of 200
meters, 2 links between intersections each of 200 meters, and 3 junctions
each of 40 meters). The road lengths and generation rates are chosen to
simulate a high congestion in main roads with less traffic in side roads. This
setting is made to show how the proposed traffic signal controller can tackle
the possible long waiting vehicles in side roads. We assume that all vehicles
have equal length and number of passengers. The γ discount factor is set to
0.9. The duration of each simulation time step is 0.25 second. The results
of this experiment are averaged over 10 independent runs. Every run has a
seed equals its starting computer clock time (in milliseconds) and consists of
100,000 time steps which is about 400 minutes.

As mentioned in (Prashanth and Bhatnagar, 2011), the proportion of
vehicles flowing in a main road to those on a side road is in the ratio of 100:5
(this setting is close to real-life traffic scenarios on many busy corridors and
grid networks). Accordingly, we set the default generation rate of the main
and side roads to 0.04 (576 vehicles per hour 10) and 0.002 (' 30 vehicles
per hour) respectively. We set the default weather condition in the main
and side roads to normal rain and sandstorm respectively and the IDM
desired velocity parameter v0 to 108 km/h and 77 km/h respectively. For
more details about the impact of weather conditions on the IDM acceleration
model parameters, we refer the reader to (Khamis et al., 2012b). We set the
speed limit of the main and side roads to 60 km/h and 55 km/h respectively.
For more details about the labeled roads and their characteristics, we refer
the reader to (Khamis and Gomaa, 2012).

In order to clarify the case where the vehicles in the side roads will wait for
very long times, i.e., main road domination, when the controller uses ε-greedy

10This rate complies with the vehicles rate of Wetstraat at normal congestion periods
which is provided by the Ministry of the Brussels-Capital region (Cools et al., 2008).
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exploration, we schedule the destination frequency such that 90% of the
traffic demand generated from the source edge node of a main road will exit
from its destination edge node. The remaining 10% of the generated traffic
demand will exit uniformly from the other 10 edge nodes. We use the same
destination frequency for the side roads. In order to simulate the transient
periods in the main roads, the traffic demand is dramatically changed every
100 minutes where the distribution of the inter-arrival time is set to U(a =
2, b = 4), i.e., at maximum a vehicle is generated every 2 time steps (7200
vehicles per hour) and at minimum a vehicle is generated every 4 time steps
(3600 vehicles per hour), continued for a period of 5 minutes (this corresponds
to extremely high congested traffic situation). In these periods, we set the
weather condition to dry and the IDM desired velocity parameter v0 to 120
km/h. Dashed vertical lines clarify times at which changes occur in dynamics.

7.2. Results

Figures 2 through 9 compare the performance of the multi-objective con-
troller (using the Bayesian probability estimation) with hybrid exploration
based on the transient state of the current and neighboring junctions (i.e.,
cooperation-based) versus the TC-1 controller (Wiering, 2000) (single objec-
tive with frequentist probability estimation using ε-exploration). The former
controller is represented by blue long dashes, while the latter controller is rep-
resented by red square dots. Note that the achievements added to the GLD
traffic simulator are applied on all controllers for fair performance evaluation.

We evaluate the performance of our proposed system in comparison with
two adaptive control strategies which are also based on AI methods: Self-
Organizing Traffic Lights (SOTL) (Cools et al., 2008) and a Genetic Algo-
rithm (GA) (Wiering et al., 2004). Both controllers are already implemented
in the GLD traffic simulator, namely “SOTL platoon” and “ACGJ-1” respec-
tively. The SOTL controller turns a traffic signal to green if the time elapsed,
since the signal turned red, reaches a certain threshold (φmin = 5 seconds).
Given that the number of vehicles in the lane controlled by this traffic signal
reaches another threshold (θ = 50 vehicles) within a distance of 80 meters
from the red signal. In the intersecting lane (which will be switched to red),
the integrity of a platoon of vehicles is maintained by preventing the platoon
tail from being cut (platoon tail ∈ [1, µ = 3 vehicles]) within a distance ω
= 25 meters from the green signal, while allowing the division of long pla-
toons. The ACGJ-1 controller creates a genetic population every time step
and tries to find the optimal city-wide configuration. The parameters of this
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algorithm are as follows: mutation factor µ = 0.05, population size s = 200,
and maximum number of generations maxGen = 100.

For performance evaluation, we use the following measures of effectiveness
(MOEs): ATT, ATWT, average speed, average number of trip stops, average
number of trip absolute stops, percentage of arrived vehicles, percentage of
rejected vehicles (indicating network utilization), and the maximum queue
length.

Under the congested and free traffic situations (e.g., due to adverse weather
conditions), our controller significantly outperforms the single objective con-
troller. For the co-learning ATT, Fig. 2, and the co-learning ATWT, Fig.
3, the mean values are lower ' 8 and 6 times respectively when using the
multi-objective controller. Figures 2 and 3 11 show that the multi-objective
controller has much more stable response to the changing dynamics (occur-
ring every 100 minutes). The response of the single objective controller to the
transient periods is severe. Fig. 4 shows that the average speed of vehicles
is higher ' 8 times when using the multi-objective controller. This means
lower congestion and faster arrival to destinations (that increases the driver’s
satisfaction). Fig. 5 shows that when using the single objective controller,
a vehicle stops at almost all junctions that the vehicle crosses before exiting
the network (' 3 junctions). Whereas, when using the multi-objective con-
troller, a vehicle stops on average at only 1 junction. This creates a traffic
green wave. Fig. 6 shows that the vehicle stops is lower ' 22 times when
using the multi-objective controller. This will save fuel consumption and
consequently is more environment friendly. Moreover, the number of vehi-
cles stops can be also considered as a good measure of the total delays that
encounter vehicles.

Fig. 7 shows that the mean value of the arrived vehicles percentage is
higher by ' 22% when using the multi-objective controller. This perfor-
mance index is a good indicator of the network throughput, and accordingly
the traffic flow rate. Fig. 8 shows that the rejected vehicles percentage relative
to all generated vehicles (i.e., generated but cannot join the network due to
overfull ingoing lanes) is lower ' 4 times when using the multi-objective con-
troller. This performance index is a good indicator of the network congestion,

11Note that for the SOTL and ACGJ-1 controllers, there is no estimator for the traveling
vehicles in the co-learning performance indices, thus we measure the performance based
on the arrived vehicles only.
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Figure 2: Co-learning average trip time.

and accordingly the network utilization.
Fig. 9 shows that the mean value of the maximum number of vehicles

waiting at any junction in the entire network is lower by ' 10 vehicles when
using the multi-objective controller. This performance index is a good indi-
cator of the driver’s comfort (i.e., waiting in shorter queues).

We use the co-learning ATWT performance index in order to show the
impact of using the cooperative hybrid exploration (discussed in Section 5) on
the long waiting times of vehicles in side roads when using the ε-exploration
solely. Fig. 10 compares the co-learning ATWT of the multi-objective con-
troller with hybrid exploration based on the transient state of the current
junction, the neighboring junctions, or the current-neighboring junctions ver-
sus the ε-exploration. The mean value of the multi-objective controller with
hybrid exploration based on the current-neighboring junctions is lower by '
10% than the multi-objective controller using ε-exploration.

7.3. Validation

In order to better realize the contributions presented in this paper, here
we give some insights about how the results presented in this paper can be
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Figure 3: Co-learning average trip waiting time.

validated. Firstly, the mathematical model of estimating the parameters
of the MDP based on the Bayesian probability interpretation presented in
Section 5 represents one sort of system validation. In Eq. 15, the agent
takes the whole history into consideration in the learning process and gives
higher weight to the initial experiences than the most recent ones. Since non-
stationarity in the traffic network (e.g., due to accidents, rush hours, etc.)
lasts for some limited time (i.e., transient periods), the system performance
will be more stable and not much affected with these abrupt changes.

Secondly, the mathematical model of the accumulated reward (Q-function)
formulation (Eq. 16) in which the various reward functions (even of the con-
flicting objectives) work in harmony to optimize the final value function.
This is generally achieved by decreasing Q(s, green) or increasing Q(s, red)
and thus the cumulative gain will increase (recall that a vehicle gain equals
Q(s, red)−Q(s, green)) and accordingly the green phase length will be longer
that allows more deserving vehicles to cross the junction.

Thirdly, comparing the performance of our multi-objective traffic signal
controller with the theoretically optimum solution may be computationally
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Figure 4: Average speed.

prohibitive. Our multi-objective traffic signal controller is mainly based on
online decision making. Whereas, it is computationally demanding to com-
pute the theoretical optimum solution at every time step, e.g., using Little’s
law of Queueing Theory which may ignore some traffic related characteristics,
e.g., the speed of vehicles and the inter-dependability between consecutive
junctions, etc.. However, we can simply say that the theoretical optimum
ATWT is zero. In addition, the theoretical optimum ATT can be calculated
from the optimum average speed in main roads (equals 70 km/h ' 20 m/sec)
and the average traveled distance (equals 1.12 km = 1120 m). Note that the
average traveled distance is calculated based on the destination frequencies
(where 90% of the traffic demand generated from the source edge node of a
main road will exit from its destination edge node.) Moreover, this average
traveled distance complies with the average absolute number of vehicle stops,
i.e., 3 stops, Fig. 5. Thus, for the traffic network in Fig. 1, the theoretical
optimum ATT equals 1120 m ÷ 20 m/sec = 56 sec ' 1 min. In compari-
son with the performance of our multi-objective traffic signal controller (the
mean value of ATT ' 4 min and the mean value of ATWT ' 2 min) con-
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Figure 5: Average number of trip absolute stops.

sidering the dramatic change in the traffic demand every 100 minutes; our
traffic signal controller yields very good results.

Finally, the mean value of the average speed of our multi-objective con-
troller is ' 17 km/h. This value complies with the average speed in many
mega cities which guarantees safety in urban areas. Moreover, this average
speed value is not too low in the sense that it yields lower fuel consumption
especially when being compared to the performance of other controllers, Fig.
4. In addition, the mean value of the average speed using our multi-objective
controller (i.e., ' 17 km/h) complies with the mean value of the ATT pre-
sented in Fig. 2 (i.e., ' 4 min); given that the average traveled distance is
1120 meters as mentioned previously. This yields some kind of validation for
the presented results.

7.4. Discussion

The proposed multi-objective traffic signal controller does not overshoot
at all in transient periods in Fig. 2 and 3. This is due to the triple effect of:
(1) the reward function of the ATWT tackles the Zeno phenomena discussed
in Section 4 (giving stationary vehicles some penalty smaller than the one
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Figure 6: Average number of trip stops.

given when the traffic signal is red). In addition, the reward function of the
ATT is function in the road type as discussed in Section 6 (in main roads,
our controller enforces the ATT objective to dominate by using a stronger
reward function), (2) using the Bayesian probability interpretation for esti-
mating the parameters of the underlying MDP which responds effectively to
the traffic non-stationarity lasting for limited period of time. As mentioned
in Section 5, the current estimation becomes the prior for the next time step.
This estimation is more stable and more adaptable to the changing envi-
ronment dynamics, and (3) using the novel adaptive cooperative exploration
technique (discussed in Section 5) in which the impact of any transient period
is propagated between the neighboring junctions to avoid very long waiting
times in side roads (i.e., main road domination).

Note that the objectives could be classified into three conflicting groups:
(1) ATWT, ATT, AJWT, FR, GW, (2) AA, and (3) MS. In particular, to
position our work in the scope of multi-objective reinforcement learning, we
do not compute the Pareto front (that is computationally demanding), we
rather use multi-objective scalar optimization (i.e., scalar addition for the
rewards representing the different objectives). For example, the Pareto front
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Figure 7: Percentage of arrived to entered vehicles.

may include one optimal solution in which the trip time is minimized to the
level that does not maximize the fuel consumption (in case a vehicle is moving
too fast). The study of such points of optimality is subject to a future study.

Moreover, despite the proposed multi-objective traffic signal controller is
based on conflicting objectives, the performance indices are not conflicting.
For instance, the number of vehicle stops is decreased when using our multi-
objective controller, that indicates lower fuel consumption, while the trip
time is also decreased, that indicates a possibility of higher fuel consumption.
However, we ignore this possibility because in urban areas the trip time is
scarcely decreased to the level at which high amount of fuel is consumed.

Table 1 presents the mean values of the various MOEs when adding the
objectives incrementally. This gives a better view about the impact of adding
the reward function of every objective on the various performance indices.
One interesting conclusion is that the addition of every reward function al-
most affects the entire set of MOEs, i.e., not just the corresponding MOE
being optimized; this assures that machine learning is inherently a multi-
objective task (as mentioned in (Jin and Sendhoff, 2008)). Moreover, this
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Figure 8: Percentage of rejected to generated vehicles.

opens the door to a future study of the impact of every individual objective,
i.e., instead of being added incrementally. In addition, one can examine the
performance when changing the order of adding the reward function of every
objective. Finally, those proposed experiments should be tried on various
traffic patterns; this can clearly show the impact of every objective under
the specific conditions at which this objective optimally behaves.

Table 1: The mean values of the various MOEs when adding the objectives incrementally.
Objective/Index ATWT ATT AJWT Speed Abs. Stops Stops Arrived% Rejected% Avg. Q
ATWT 0.14 2.43 0.03 26.59 0.52 1.76 96.06 15.48 0.04
ATT 4.06 5.80 0.74 12.46 0.86 6.93 94.75 15.07 1.52
AJWT 4.95 7.56 1.07 10.50 1.03 9.42 93.60 16.69 1.94
FR 5.45 8.36 1.21 9.80 1.06 9.94 93.23 17.44 2.12
GW 6.66 8.80 1.41 9.56 0.95 9.38 93.39 15.44 2.68
AA 2.64 5.01 0.54 14.60 0.99 7.46 94.85 16.62 1.00
MS 2.03 3.99 0.38 17.23 0.91 6.47 95.43 15.52 0.74

Another issue worth discussion is studying the time complexity of the
proposed multi-objective traffic signal control framework. On the one hand,
in the work presented in this thesis, we did not optimize the execution time
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Figure 9: Maximum queue length.

of the controller, e.g., using parallel programming techniques. However, the
time complexity of the multi-objective controller versus the single objective
one is comparable. This is mainly due to the scalar addition of the reward
functions of the multi-objective controller. Thus, the high performance gain
of the multi-objective controller (as shown by the various performance in-
dices) does not come with a high computation cost. On the other hand, the
proposed traffic signal controller is based on online learning and accordingly
online decision making, thus there is no specific time threshold for reaching a
terminal state. This is mainly due to the continuous learning of the changing
environment dynamics.

7.5. City Centre Network: competing demands with non-parallel arterials

In this section, we apply the proposed traffic signal controller on a differ-
ent traffic pattern, Fig. 11 (non-symmetric network with competing demands
and not only parallel arterials). This traffic network complies with the city
centre traffic network presented in (Wiering et al., 2004). The inner edge-
nodes represent a city centre.
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Figure 10: Co-learning ATWT of the multi-objective controller with hybrid exploration
transient state based on: current junction, neighboring junctions, current-neighboring
junctions, and with ε-Exploration.

The settings of this traffic network are similar to those in the main sce-
nario traffic network, Fig. 1; number of lanes in each direction, length and
number of passengers of each vehicle, γ discount factor, and the duration of
each simulation time step.

The horizontal and vertical roads highlighted by green are the main roads.
The results of this experiment are averaged over 10 independent runs. Every
run has a seed equals its starting computer clock time (in milliseconds) and
consists of 50,000 time steps which is about 200 minutes.

The generation and destination rates are chosen to simulate competing
demands where the default generation rate of all edge nodes is set to 0.01
(144 vehicles per hour). The default weather condition is set to light fog
and the IDM desired velocity parameter v0 to 90 km/h. We schedule the
destination rate of every edge node to be equiprobable to the rest of edge
nodes, i.e., equals 1/8.

In order to simulate the transient periods at normal congestion periods
(e.g., road users going to and leaving from the work), the traffic demand is
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Figure 11: Traffic network with 9 edge nodes and 22 traffic signal nodes - City centre.

changed every 100 minutes where the distribution of the inter-arrival time
is set to 0.04 (576 vehicles per hour) continued for a period of 5 minutes.
In these periods, we set the weather condition to normal rain and the IDM
desired velocity parameter v0 to 108 km/h. Dashed vertical lines clarify times
at which changes occur in dynamics.

Figures 12 through 15 show that the average junction waiting time (AJWT),
the average number of trip stops, the percentage of rejected to generated ve-
hicles, and the average number of vehicles waiting at any junction are better
when using the multi-objective controller compared to the other controllers.
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Figure 12: Average junction waiting time - City centre.

7.6. Average Green Light Percentage

In order to determine how the proposed traffic signal controller deals
with congestion specifically and how it behaves generally, we added a new
performance index to the GLD traffic simulator, that is the average green
light percentage 12 at each junction. This performance index represents the
percentage of time that a specific traffic light configuration 13 at a specific
junction is green. For space limitations, we mention here the traffic signal
operation at two junctions only (A and B), Fig. 16, that are highlighted by
red boxes in Fig. 11.

Figures 17 through 20 show that the average green light percentage at
junction A using the proposed multi-objective controller is better than the
other controllers. For instance, the proposed controller, Fig. 17, responds

12The average is considered due to sampling during the 50,000 time steps.
13Recall that the traffic light configurations represent the consistent green lights on all

directions of a junction that do not cause any possible accidents between the crossing
vehicles.
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Figure 13: Average number of trip stops - City centre.

effectively to the transient periods (occurring every 100 minutes) where it
gives larger green time percentage to the critical configuration, i.e., the sec-
ond configuration towards the city centre. Nevertheless, at the same time,
the proposed controller gives good chances to the vehicles in the other signal
configurations to cross junction A. On the one hand, the TC-1 controller,
Fig. 18, and the ACGJ-1 controller, Fig. 19, do not make the sufficient
distinction to the critical configuration especially at transient periods. On
the other hand, the SOTL controller, Fig. 20, over-discriminate the critical
configuration, however, it almost blocks the third traffic signal configuration.

Figures 21 through 24 show that the average green light percentage at
junction B using the proposed multi-objective controller is better than the
other controllers. For instance, the proposed controller, Fig. 21, responds
effectively to the transient periods (occurring every 100 minutes) where it pri-
oritizes the traffic signal configurations according to their directions to/from
the city centre with the following order: (1) the third configuration (the ve-
hicles most probably are entering the city centre), (2) the first configuration
(the vehicles are leaving the city centre at rush hours), and then (3) the
second configuration (the vehicles may enter, leave, or move around the city
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Figure 14: Percentage of rejected to generated vehicles - City centre.

centre). The TC-1 controller, Fig. 22, the ACGJ-1 controller, Fig. 23, and
the SOTL controller, Fig. 24, do not make such prioritization to the possible
traffic signal configurations.

8. Conclusions and Future Work

8.1. Conclusions

In this paper, we present an adaptive multi-objective reinforcement learn-
ing system for traffic signal control based on a cooperative multi-agent frame-
work. We show that using RL for solving control optimization problems in
continuous state-space (specifically in the traffic signal control domain) has
some challenges that affect the reward design of the model. In addition,
we show that using the Bayesian probability interpretation to estimate the
parameters of the MDP probabilities can result in a better response to the
traffic non-stationarity. Traffic non-stationarity are simulated by changing
the traffic flow and traffic demand resulting from changing the weather con-
ditions.
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Figure 15: Average queue length - City centre.

Generally, the application of multi-objective RL optimization is still a
challenging task, and particularly, in the domain of traffic signal control.
However, using an innovative reward design on a scalar-based form can
greatly boost the various performance indices without the overhead of other
computationally demanding techniques (e.g., using Max-plus, Pareto front
optimization, etc.)

Moreover, we show that the application of new exploration techniques
that are adaptive to the current traffic conditions can greatly affect the per-
formance of the traffic signal controller.

Under the congested and free traffic situations, the proposed multi-objective
traffic signal controller significantly outperforms the underlying single objec-
tive controller. For instance, the average trip and waiting times are lower '
8 and 6 times respectively when using the multi-objective controller.

Finally, we show that the proposed traffic signal controller outperforms
other controllers using the city centre traffic pattern with competing demands.
This traffic network is unlike the typical traffic pattern of main arterials and
side roads (that leads to a main road domination) where the proposed traffic
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Figure 16: Traffic signal operation at two junctions (A and B).

signal controller optimally behaves.

8.2. Future Work

The work presented in this paper opens the door to a bulk of future work.
For better organizing the suggested directions for future work, we categorize
our ideas into future work in traffic signal control model and future work in
traffic signal simulation model.

8.2.1. Traffic Signal Control Model

Firstly, we want to investigate the multi-objective optimization using the
Pareto front approach. This will be a challenging task in the domain of
reinforcement learning traffic signal control. For instance, we may separate
the benefits associated with each traffic objective and identify the trade-offs
associated with each one. We can introduce the objectives one by one and
show how these objectives affect the various performance indices.

Secondly, we want to check the robustness/sensitivity of the proposed
multi-objective traffic signal controller due to noisy input provided by sen-
sors, i.e., partial observability of state-space. In (Schouten and Steingröver,
2007), the authors overcome the partial observability of the traffic state by
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Figure 17: Average green light percentage at junction A using the multi-objective con-
troller.

estimating belief states and combining this with multi-agent variants of ap-
proximate Partially Observable Markov Decision Process (POMDP) solution
methods. It was shown that the state transition model and value function
could be estimated effectively under partial observability.

Thirdly, we plan to control traffic signals in roundabouts. An initial idea
is based on game-theory ; every vehicle in every approach (i.e., road in the
roundabout) will play a game with other vehicles in the other approaches.
The precedence of roundabout crossing will be determined accordingly.

Fourthly, we want to check the role of further exploration techniques in
enhancing the various performance indices (i.e., not only the trip waiting
time of vehicles). Another possible improvement is generalizing the role of
exploration in enhancing the performance when the congested periods are
continued over an extended course of time or when no change in dynamics
occur for a long period of time (despite these are rare cases).

Finally, our long-term goal is to implement and test the proposed con-
troller on real traffic network in Egypt. However, there are some challenges
of deployment in Egypt, e.g., unlanned roads, chaotic driving behavior, etc.
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Figure 18: Average green light percentage at junction A using the TC-1 single-objective
controller.

We can overcome the unlanned roads by state-space approximation to the ve-
hicles positions. For the chaotic driving behavior, the traffic signal controller
can learn the non-stationarities due to the aggressive undisciplined driving
behavior in Egypt. We need to integrate the traffic control system with sen-
sors (through loop detectors in roads, cameras, and/or communication with
vehicles using GPS/Wi-Fi sensors).

8.2.2. Traffic Signal Simulation Model

Firstly, we need to examine the controller behavior when simulating an
accident at some part of the traffic network (that need special handling from
the traffic signal controller) while in another part of the network there is a
free-flowing traffic.

Secondly, we plan to use learning-based techniques to estimate the optimal
values of the parameters of the IDM acceleration model based on the driving
behavior in Egypt.

Finally, we need to use a more advanced traffic simulator (rather than
the GLD) to simulate a real traffic network and examine the proposed con-
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Figure 19: Average green light percentage at junction A using the ACGJ-1 genetic-based
controller.

troller behavior accordingly. One proposed solution is the integration of the
proposed traffic signal control framework with a 3D traffic simulator that
allows for human drivers as well as agent vehicles. This simulator has been
being developed as a collaboration of our research team with the Prendinger
Laboratory in the National Institute of Informatics (NII), Tokyo, Japan.
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Figure 20: Average green light percentage at junction A using the SOTL rule-based con-
troller.
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