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Abstract—Population is steadily increasing worldwide, resulting
in intractable traffic congestion in dense urban areas. Adaptive
traffic signal control (ATSC) has shown strong potential to ef-
fectively alleviate urban traffic congestion by adjusting signal
timing plans in real time in response to traffic fluctuations to
achieve desirable objectives (e.g., minimize delay). Efficient and
robust ATSC can be designed using a multiagent reinforcement
learning (MARL) approach in which each controller (agent) is
responsible for the control of traffic lights around a single traf-
fic junction. Applying MARL approaches to the ATSC problem
is associated with a few challenges as agents typically react to
changes in the environment at the individual level, but the overall
behavior of all agents may not be optimal. This paper presents
the development and evaluation of a novel system of multiagent
reinforcement learning for integrated network of adaptive traffic
signal controllers (MARLIN-ATSC). MARLIN-ATSC offers two
possible modes: 1) independent mode, where each intersection
controller works independently of other agents; and 2) integrated
mode, where each controller coordinates signal control actions
with neighboring intersections. MARLIN-ATSC is tested on a
large-scale simulated network of 59 intersections in the lower
downtown core of the City of Toronto, ON, Canada, for the
morning rush hour. The results show unprecedented reduction in
the average intersection delay ranging from 27% in mode 1 to 39%
in mode 2 at the network level and travel-time savings of 15% in
mode 1 and 26% in mode 2, along the busiest routes in Downtown
Toronto.
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microsimulation modeling, multi-agent reinforcement learning,
multi-agent system, reinforcement learning.
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I. INTRODUCTION

POPULATION is steadily increasing worldwide; conse-
quently, the demand for mobility is increasing, particularly

during good economic times. When growth in social and eco-
nomic activities outpace growth in transportation infrastructure,
congestion is inevitable. Severe congestion and long commute
hours plague many large urban areas around the word, and the
Greater Toronto, ON, Canada, Area is no exception. Conges-
tion wastes time, hampers social and economic activities, and
harms the environment, which all deteriorate the quality of our
lives. Adaptive traffic signal control (ATSC) has the potential
to efficiently alleviate traffic congestion by adjusting signal
timing parameters in response to traffic fluctuations to achieve
a certain objective (e.g., minimize delay); therefore, it has great
potential to outperform both pretimed and actuated control
[1]. Employing ATSC strategies at the local level (isolated
intersection) might limit their potential benefits. Therefore,
optimally controlling the operation of multiple intersections
simultaneously can be synergetic and beneficial. However, such
integration certainly adds more complexity to the problem.
Coordination has been typically approached in a centralized
way (e.g., Split Cycle Offset Optimization Technique (SCOOT)
[2] and TUC [3]), which is only feasible if communication
channels among all intersections and the central control loca-
tion are available, which is resource demanding. The Sydney
Coordinated Adaptive Traffic System (SCATS) [4] is another
example of an adaptive signal control system that is a hierar-
chical and distributed system in which an area is divided into
smaller subsystems (in the range of one to ten intersections)
that independently perform. PRODYN [5], Optimized Policies
for Adaptive Control [6], and RHODES [7] are also examples
of adaptive systems that are decentralized, but their relatively
complex computation schemes make their implementation
costly [8].

The coordination mechanism in the given systems is em-
ployed along an arterial (where the major demand is). Although
it is important to efficiently operate traffic signals along arterials
where the major demand is (e.g., progression), it is also im-
portant to consider the network-wide effect of such operation.
In a signalized urban network setting, considering a network-
wide objective has the potential to improve overall network
performance and mobility and to reduce emissions.
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As an alternative, coordination can be plausibly achieved
using reinforcement learning and game-theoretic approaches
[8]. Reinforcement learning (RL) has shown good potential
for self-learning closed-loop optimal traffic signal control in
a stochastic traffic environment [9], [10]. RL has the added
advantage of being able to perpetually learn and improve
service over time. In RL, a traffic signal represents a control
agent that interacts with the traffic environment in a closed-loop
system to achieve optimal mapping between the environment’s
traffic state and the corresponding optimal control action, of-
fering an optimal control law. Mapping from states to actions
is also referred to as the control policy. The agent iteratively
receives a feedback reward for actions taken and adjusts the
policy until it converges to the optimal control policy. Applying
RL to a transportation network of multiple signalized intersec-
tions is associated with some challenges. Agents typically react
to changes in the environment at the individual level, but the
overall behavior of all agents may not be optimal. Each agent
is faced with a moving-target learning problem, in which the
agent’s optimal policy changes as the other agents’ policies
change over time [8]. Game theory provides tools to model
multiagent systems as a multiplayer game and provide a rational
strategy to each player in a game. Multiagent reinforcement
learning (MARL) is an extension of RL to multiple agents in
a stochastic game (SG; i.e., multiple players in a stochastic
environment). The decentralized traffic control problem is an
excellent testbed for MARL due to the inherited dynamics and
stochastic nature of the traffic system [8], [11], which is our
focus in this paper.

Despite recent approaches employing MARL in an SG,
MARL faces many challenges. First is the exponential growth
in the state–action space with the increase in the number of
agents. Second is that the majority of the MARL-based ATSC
in the literature assume that agents independently learn, in
which case each agent individually acts in its local environment
without explicit coordination1 with other agents in the envi-
ronment. Although this simplifies the problem, it limits their
usefulness in case of a network of agents. For example, in over-
saturated traffic conditions, queues could easily propagate from
a downstream intersection (agent) and spills back to upstream
intersections (agents) in a network-wide cascading fashion;
such cases require network-wide multiagent coordination, as
discussed earlier. Thus, flexible and computationally efficient
approaches are becoming instrumental in controlling a network
of agents, plausibly by employing heuristics and approximate
approaches based on modifying the existing MARL tech-
niques [8].

To address these limitations, we present a novel multiagent
reinforcement learning for integrated network of adaptive traffic
signal controllers (MARLIN-ATSC) that offers the following
features and characteristics: 1) decentralized design and op-
eration, which is typically less expensive compared with the

1It is important to not confuse the coordination that is concerned about
creating green wave along a certain corridor by adjusting the offset timing
(defined as progression hereafter) with the mechanism between agents (sig-
nalized intersections) to coordinate their policies such that a certain objective
is achieved for the entire traffic network (defined as coordination hereafter). In
this paper, coordination refers to the latter one.

centralized system; 2) scalable to accommodate any network
size; 3) robust, i.e., with no single point of failure; 4) model-
free, i.e., does not require a model of the traffic system that
is challenging to obtain; 5) self-learning, i.e., reduces human
intervention in the operation phase after deployment (the most
costly component of operating existing ATSCs); and 6) coordi-
nated, i.e., by implementing mode 2 (integrated mode), which
coordinates the operation of intersections in 2-D road networks
(e.g., grid network) this is a new feature that is unprecedented in
ATSC state of the art and practice. In addition, MARLIN-ATSC
is tested on a large-scale simulated network of 59 intersections
in Downtown Toronto using the input data (e.g., traffic counts,
signal timings, etc.) provided by the City of Toronto.

II. FROM SINGLE-AGENT TO MULTIAGENT

REINFORCEMENT LEARNING

A. RL

Typically, RL is concerned with a single agent operating
in an environment so as to maximize its cumulative long-run
reward. The environment is modeled as a Markov decision
process (MDP), assuming that the underlying environment is
stationary in which that the environment’s state only depends
on the agent’s actions. The most common single-agent RL
algorithm is Q-learning [12]. The Q-learning agent learns
optimal mapping between the environment’s state s and the
corresponding optimal control action a based on accumulating
rewards r(s, a). Each state–action pair (s, a) has a value called
the Q-factor that represents the expected long-run cumulative
reward for the state–action pair (s, a). In each iteration, i.e.,
k, the agent observes current state s and chooses and executes
action a that belongs to the available set of actions A; then, the
Q-factor is updated according to the immediate reward r(s, a)
and the state transition to state s′ as follows [13]:

Qk(sk, ak) = (1 − α)Qk−1(sk, ak)

+ α

[
r(sk, ak) + γ max

ak+1∈A
Qk−1(sk+1, ak+1)

]

where α and γ ∈ (0, 1] are referred to as the learning rate and
the discount rate, respectively.

The agent can simply choose the greedy action at each
iteration based on the stored Q-factors, as follows:

ak+1 ∈ argmax
a∈A

[Q(s, a)] .

However, sequence Qk is proven to converge to the optimal
value only if the agent visits the state–action pair for an infinite
number of iterations [12]. This means that the agent must
sometimes explore (try random actions) rather than exploit the
best known actions. To balance the exploration and exploitation
in Q-learning, algorithms such as ε-greedy and softmax are
typically used [13].

B. MARL

MARL is an extension of RL to multiple agents (signalized
intersections). The decentralized traffic signal control problem
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is an excellent testbed for MARL due to the inherent dynamics
and stochastic nature of the traffic system [8], [11]. The sim-
plest way to extend RL to the MARL is to consider the local
state and local action for each agent, assuming a stationary envi-
ronment and that the agent’s policy is the prime factor affecting
the environment. However, MARL in the traffic environment
is associated with some challenging issues because the traffic
environment is nonstationary since it includes multiple agents
learning concurrently, i.e., the effect of any agent’s action on the
environment depends on the actions taken by the other agents.
Each agent is, therefore, faced with a moving-target learning
problem because the best policy changes as the other agents’
policies change, which accentuates the need for coordination
among agents. Coordination can be achieved by considering the
joint state and joint action for the other agents in the learning
process. Moreover, given that all agents are simultaneously
acting, the agents’ choices of actions must be mutually con-
sistent to achieve their common goal of optimizing the signal
control problem. Therefore, the agents require a coordination
mechanism to make the optimal decision from the possible joint
actions (i.e., agents have to coordinate their choices/actions to
reach a unique equilibrium policy). Agent coordination in this
context is not to be confused with conventional traffic signal
coordination that maximizes green bands, offsets, etc.

Markov games form the theoretical framework of MARL.
A Markov game (known as an SG) is an extension of the
MDP to multiagent environments. The game is played in a
sequence of stages. At each stage, the game has a certain state
in which the players select actions and each player receives
a reward that depends on the current state and the chosen
joint action. The game then moves to a new random state
whose distribution depends on the previous state and the joint
action chosen by the players. The procedure is repeated in
the new state and continues for a finite or infinite number of
stages. The agent’s objective is to find a joint policy (known as
equilibrium) in which each individual policy is a best response
to the others, such as Nash equilibrium [14]. A comprehensive
survey of MARL algorithms can be found in [15]. Examples
of MARL approaches with a coordination mechanism are Op-
timal Adaptive Learning (OAL) [16] for cooperative games
and Nonstationary Converging Policies (NSCP) algorithms [17]
for general sum games. Coordination in OAL [16] and NSCP
[17] algorithms is achieved by modeling the other agents’
policies, and hence, the agent can act accordingly. However,
the applicability of such approaches is limited to optimize a
few traffic signal agents due to the obvious exponentially in-
creasing joint space of states with the increase in the number of
agents [8].

III. CHALLENGES OF APPLYING MULTIAGENT

REINFORCEMENT LEARNING FOR ADAPTIVE

TRAFFIC SIGNAL CONTROL SYSTEMS

Thorpe [18] applied the state–action–reward–state–action
(SARSA) RL algorithm to a simulated traffic light control prob-
lem. The results showed that the SARSA RL algorithm outper-
formed the fixed timing plans by reducing the average vehicle
waiting time by 29%. Wiering [19] utilized model-based RL

(with state transition models and state transition probabilities)
to control traffic-light agents to minimize the waiting time
of vehicles in a small grid network. The experimental results
showed that RL systems outperform nonadaptive systems by
22% in waiting time. Abdulhai et al. [20] applied a model-
free Q-learning technique to a simple two-phase isolated traffic
signal in a 2-D road network. Q-learning for the isolated traffic-
light controller outperformed the pretimed control scheme for
the variable traffic flow case by around 44%. Camponogara
and Kraus Jr. [21] formulated the traffic signal control problem
as a distributed SG, in which agents employed a distributed
Q-learning algorithm. When testing policy 3 (i.e., both agents
run Q-learning), a 43% reduction in waiting time was achieved
compared with policy 1 (assigns the same probability to all ac-
tions available to an agent). De Oliveira et al. [22] extended RL
to multiple isolated traffic lights. They proposed an RL method
called RL with context detection, which can handle stochastic
traffic patterns that occur due to traffic dynamics. Richter et al.
[23] applied the natural actor critic (NAC) algorithm to a 10 ×
10 junction grid simulation network. NAC outperformed SAT
(adaptive controller inspired by SCATS) by 20% reduction in
average network travel time. Another example can be found in
the work of Arel et al. [24], where RL is used to control the
central intersection in a network of five intersections, whereas
the other four intersections use the longest-queue-first heuristic.
Li et al. [25] proposed an RL-based approach in which each
agent considered the weighted sum of its local delay and its
neighbors’ delays as the outcome of its action. Salkham et al.
[26] proposed a similar algorithm to provide adaptive and
efficient urban traffic control. Medina and Benekohal [27] used
Q-learning and an approximate DP algorithm to control the
traffic signals in which the learning agent considered its local
state in addition to information on the congestion levels of
neighboring intersections.

In most of the previous studies, algorithms were applied to
simplified scenarios and under strong assumptions in terms of
traffic behavior by considering a simplified simulation envi-
ronment [20]–[24] and/or assuming hypothetical traffic flows
[18]–[24], [28], which does not necessarily mimic the reality
in traffic networks. Moreover, the previous studies considered
independent learning agents and considered no explicit mecha-
nism for coordination.

On the other hand, Kuyer et al. [29] found the only algorithm,
to the best of authors’ knowledge, that considered an explicit
coordination mechanism between learning agents, extending
the work of Wiering in [19] using the Max-plus algorithm.
The Max-plus algorithm was used to estimate the optimal joint
action by sending locally optimized messages among connected
agents. However, the Max-plus algorithm was found compu-
tationally demanding as it requires negotiations between the
agents to coordinate their actions. Due to the real-time nature
of the ATSC problem, this forces the agents to report their
current best action at any time even if the action found so were
suboptimal. In addition, the use of a model-based RL approach
adds unnecessary complexities compared with using a model-
free approach such as Q-learning.

In conclusion, there are two major challenges associated with
applying RL (MARL) to the ATSC problem, i.e., the need
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Fig. 1. MARLIN-ATSC platform.

for coordination and the cure of dimensionality. These major
challenges are discussed as follows.

• Need for Coordination: The need for coordination stems
from the fact that the effect of any agent’s action on the
environment also depends on the actions taken by the
other agents. Hence, the agents’ choices of actions must
be mutually consistent to achieve their intended effect
[15].It can be concluded from the reviewed literature that
the majority of the previous studies considered indepen-
dent learning agents, such as that by De Oliveira et al.
[22], Camponogara and Kraus Jr. [21], Bazzan [30],
Richter et al. [23], Arel et al. [24], Wiering [19], Li et al.
[25], and Salkham et al. [26]. Although Kuyer et al. [29]
considered the two-level coordination, it suffers from the
aforementioned limitations.

• Curse of Dimensionality: Although there exist a few
coordination-based MARL methods (e.g., OAL [16] and
NSCP [17]), they suffer from the curse of dimension-
ality issue that arises because the state space is expo-
nentially growing with the number of agents. Even in
SG-based MARL approaches that are proven to optimally
converge to the joint policy, each agent has to keep a
set of tables whose size is exponential in the number of
agents: |S1| × · · · × |SN | × |A1| × · · · × |AN |, where Si

and Ai represent the state and action spaces for agent i,
respectively. In addition to the dimensionality issue, these
methods require each agent to observe the state of the
whole system, which is infeasible in the case of trans-
portation networks. In the following section, we introduce
a new algorithm that maintains a coordination mechanism
between agents without compromising the dimensionality
of the problem.

IV. MULTIAGENT REINFORCEMENT LEARNING FOR

INTEGRATED NETWORK OF ADAPTIVE TRAFFIC SIGNAL

CONTROLLERS PLATFORM

The MARLIN-ATSC platform is shown in Fig. 1. The
platform consists of two main layers. The first layer is an
input configuration layer that is responsible for configuring and
providing the necessary input to the second layer.

The configuration layer has two main roles: 1) It configures
the simulation-based learning environment (model) such that
the simulated environment closely matches the real-world envi-
ronment and 2) configures RL-design parameters.

The second layer is a control layer that includes three inter-
acting components, as shown in Fig. 1.

A. Agent

The agent component implements the control algorithm; the
agent is the learner and the decision-maker that interacts with
the environment by first receiving the system’s state and the
reward and then selecting an action accordingly. A generic
agent model is developed using Java Programming Language
such that different levels of coordination, learning methods,
state representations, phasing sequence, reward definition, and
action selection strategies can be tested for any control task. In
MARLIN-ATSC, agents can implement one of the following
two control modes.

• Independent Mode: In this mode, each controller has an
RL agent working independently of other agents using
MARL for independent controllers (MARL-I), in which
each agent implements a Q-learning algorithm [12].

• Integrated Mode: In this mode, each controller coordi-
nates the signal control actions with the neighboring con-
trollers by implementing a MARLIN learning algorithm.

• MARLIN Learning Approach: MARLIN presents a new
control system that maintains an explicit coordination
mechanism while addressing the curse of dimensionality
problem for a large-scale network of connected agents by
means of the following measures.

• Exploiting the Principle of Locality of Interaction [31]
Among Agents: The principle of locality of interaction
endeavors to estimate a local neighborhood utility that
maps the effect of an agent to the global value function
while only considering the interaction with its neighbors.
Hence, it is sufficient to consider the neighbors’ policies
to find the best policy for the agent.

• Utilizing the Modular Q-Learning Technique [32]:
Modular Q-learning partitions the state space to partial
state spaces that consist of two agents. As a consequence,
the size of the partial state space is always |S|2 regardless
of the number of agents and, therefore, results in a reason-
able state space.

In MARLIN, each signalized intersection (agent) plays a
game with all its adjacent intersections in its neighborhood. The
agent has a number of learning modules; each corresponds to
one game. The state and action spaces are distributed such that
the agent learns the joint policy with one of the neighbors at a
time, following the principle of modular Q-learning.

The following are the steps for the learning approach de-
signed in MARLIN that is formally described in a pseudocode
in Algorithm 1.

• If there are |NBi| neighbors for agent i, there are |NBi|
partial state and action spaces for agent i. Each partial state
space and action space consists of agent i and one of the
neighbors NBi[j], s.t. j ∈ NBi (Si, SNBi[j], Ai, ANBi[j]).

• Each agent i builds a model that estimates the policy
for each of its neighbors and is represented by matrix
Mi,NBi[j], s.t. j ∈ NBi, where the rows are joint states
Si × SNBi[j], and the columns are the neighbor’s actions
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ANBi[j]. Each cell Mi,NBi[j]([si, sNBi[j]], aNBi[j]) repre-
sents the probability that agent NBi[j] takes action aNBi[j]

at joint state [si, sNBi[j]] using the count of visits to the
state–action υ([ski , s

k
NBi[j]

], akNBi[j]
) for the state–action

pair ([ski , s
k
NBi[j]

], akNBi[j]
) [see (3)].

• Each agent i learns the optimal joint policy for agents
i and NBi[j] ∀ j ∈ {1, . . . , |NBi|} by updating the
Q-values that are represented by a matix of |Si×SNBi[j]|
rows and |Ai×ANBi[j]| columns, where each cell
Qi,NBi[j]([si, sNBi[j]],[ai, aNBi[j]]) represents the Q-value
for a state–action pair in the partial spaces corresponding
to the pair of connected agents (i,NBi[j]).

• Each agent updates Q-values Qi,NBi[j]([si, sNBi[j]],
[ai, aNBi[j]]) using the value of the best-response action
taken in the next state. The best-response value (brki ) is
the maximum expected Q-value at the next state, which is
calculated using the models for other agents [see (4)].

• Each agent decides its action without direct interaction
with the neighbors. Instead, the agent uses the estimated
models for the other agents and act accordingly. Agent i
chooses the next action using a simple heuristic decision
procedure, which bias action selection toward actions that
have the maximum expected Q-value over its neighbors
NBi. The likelihood of Q-values is evaluated using the
models of the other agents, i.e., Mi,NBi[j], estimated in the
learning process [see (6)].

Algorithm 1: MARLIN Learning

Initialization at time k = 0:
For each agent i, i ∈ {1, 2, . . . , N}:
For each neighbor j ∈ {1, 2, . . . , |NBi|}
Initialize s0i , a0i , a0NBi[j]

M0
i,NBi[j]

(
[si, sNBi[j]], aNBi[j]

)
= 1/|ANBi[j]|,

Qk
i,NBi[j]

(
[si, sNBi[j]], [ai, aNBi[j]]

)
= 0

End for
End for
For each time step k, do:

For each agent i, i ∈ {1,2, . . . ,N}, do:
For each neighbor NBi[j], j ∈ {1, 2, . . . , |NBi|} do:

a. Observe akNBi[j]
, sk+1

i sk+1
NBi[j]

, and rki
b. Update Mi,NBi[j]

Mi,NBi[j]

([
ski , s

k
NBi[j]

]
, akNBi[j]

)

=
υ

([
ski , s

k
NBi[j]

]
, akNBi[j]

)
∑

aNBi[j]
∈ANBi[j]

υ
([

ski , s
k
NBi[j]

]
, aNBi[j]

) (3)

c. Choose the maximum expected Q-value at state
sk+1
NBi[j]

brki =maxai∈Ai

[ ∑
aNBi[j]

∈ANBi[j]

Qk
i,NBi[j]

×
([

ski , s
k
NBi[j]

]
, [ai, aNBi[j]]

)

×Mi,NBi[j]

([
ski , s

k
NBi[j]

]
, aNBi[j]

)]
(4)

d. Update Qi,NBi[j]

Qk
i,NBi[j]

([
ski , s

k
NBi[j]

]
,
[
aki , a

k
NBi[j]

])
= (1 − α)Qk−1

i,NBi[j]

×
([

ski , s
k
NBi[j]

]
,
[
aki , a

k
NBi[j]

])
+ α

[
rki + γbrki

]
(5)

Decide

ak+1
i = arg max

ai∈Ai

[ ∑
j∈{1,2,...,|NBi|}

∑
aNBi[j]

∈ANBi[j]

×Qk
i,NBi[j]

([
ski , s

k
NBi[j]

]
, [ai, aNBi[j]]

)

×Mi,NBi[j]

([
ski , s

k
NBi[j]

]
, aNBi[j]

)]
(6)

End For
End For
End For

B. Simulation Environment

The simulation environment component models the traf-
fic environment. In this paper, Paramics, which is a micro-
scopic traffic simulator, is used to model traffic environment
[33]. Paramics models stochastic vehicle flow by employing
speed regulations, car-following, gap acceptance, and over-
taking rules. Paramics provides three methods of traffic as-
signment that could be employed at different levels, i.e.,
“all-or-nothing” assignment, stochastic assignment, and dy-
namic feedback assignment. In this application, a dynamic
stochastic traffic assignment was used where 1) random noise
was added to the travel cost to account for heterogeneity among
drivers’ perception of travel cost, and 2) a dynamic feedback
interval was used to update route travel times for familiar
drivers in the simulation. Paramics application programming
interface functions were used to construct the state, execute the
action, and calculate the reward for each signalized intersection.

Some of the main challenges in deigning any RL system are
the design of the state, action, and reward definitions. In [34],
a comprehensive investigation of these key issues in RL-based
signal control for isolated intersections is conducted. The state,
action, and reward definitions recommended in [34] and [35]
are adopted in this paper as follows. (For more details on the
definitions, see [34].)

• State Definition: Queue Length: The agent’s state is
represented by a vector of 2 + P components, where P
is the number of phases. The first two components are
1) index of the current green phase and 2) elapsed time
of the current phase. The remaining P components are the
maximum queue lengths associated with each phase.
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• Action Definition: Variable Phasing Sequence: The agent
is designed to account for a variable phasing sequence in
which the control action is either to extend the current
phase or to switch to any other phase according to the fluc-
tuations in traffic, possibly skipping unnecessary phases.
Therefore, this algorithm is an acyclic timing scheme with
a variable phasing sequence in which not only the cycle
length is variable but the phasing sequence is also not
predetermined. Hence, the action is the phase that should
be in effect next.

• Reward Definition: Reduction in the Total Cumulative
Delay: The immediate reward for a certain agent is defined
as the reduction (saving) in the total cumulative delay
associated with that agent, i.e., the difference between the
total cumulative delays of two successive decision points.
The total cumulative delay at time k is the summation of
the cumulative delay, up to time k, of all the vehicles that
are currently in the intersections’ upstreams. If the reward
has a positive value, this means that the delay is reduced
by this value after executing the selected action. However,
a negative reward value indicates that the action results in
an increase in the total cumulative delay.

C. Interface

The interface component manages the interactions between
the agent and the simulation environment by exchanging the
state, reward, and action. The interaction between the agent
and the environment is associated with the following design
elements.

• A synchronized interaction between the agent and the
environment was designed to ensure that the simulation
environment is held while the agent is performing the
learning and decision-making processes and, finally, pro-
duces the action that should be executed by a simulation
environment. At the same time, the agent should be on
hold until the action is executed in the environment, and
the resultant state and the reward are measured.

• The system was designed such that the interaction fre-
quency is variable for each agent. The interaction occurs
at each specified time interval (1 s in this research) as long
as the current green for a signalized intersection that is
associated with an agent i exceeded the minimum green
time. Otherwise, the interaction starts after the minimum
green.

The agent was designed to learn off-line through a simulation
environment (such as the microsimulation model employed in
the experiments) before field implementation. After conver-
gence to the optimal policy, the agent can either be deployed in
the field by mapping the measured state of the system to optimal
control actions directly using the learned policy or continue
learning in the field by starting from the learned policy.

V. EXPERIMENTAL RESULTS

A. Testbed Network

MARLIN-ATSC is tested on a simulated network of the
Lower Downtown Toronto network. The lower downtown of

Fig. 2. Currently implemented signal control systems.

Toronto is the core of the City of Toronto. The lower downtown
of Toronto in this study is bounded to the South by the Queens
Quay corridor, to the West by Bathurst Street, to the East by
the Don Valley Parkway, and to the North by Front Street.
Toronto is the oldest, densest, and most diverse area in the
region, and its downtown core contains one of the highest
concentrations of economic activity in the country. This paper
demonstrates large-scale application of MARLIN-ATSC on a
simulated replica of the lower downtown core. A base-case
(BC) simulation model for the lower downtown core was origi-
nally developed using Paramics in the Intelligent Transportation
Systems Center and Testbed, University of Toronto, for the year
2006. In this application, the model is further refined to reflect
the signal timing sheets provided by the City of Toronto.2 The
analysis period considered in this application is the A.M. peak
hour, which has around 25 000 vehicular trips.

B. Benchmarks

It is typically difficult to find a benchmark for large-scale
traffic signal control problems given that the operational details
of most traffic control systems are not easily available for ob-
vious commercial reasons. The performance of the MARLIN-
ATSC approach is compared with the BC scenario in which
traffic signals, as defined and operated by the City of Toronto,
are a mix of fixed-time control, semiactuated control, and
SCOOT control, as shown in Fig. 2. It is worth noting that, due
to the limited technical details about the operation of SCOOT,
it is approximated in this thesis as an enhanced fully-actuated
control, in which loop detectors are placed on all approaches,
and extension times are conducted second by second.

C. Results and Discussion

Results are reported for BC control systems (existing con-
ditions), MARL-I (represents MARLIN-ATSC Independent
Mode with no communication between agents), and MARLIN
(represents MARLIN-ATSC Integrated Mode with coordina-
tion between agents).

2The contact person is Rajnath Bissessar; City of Toronto—Transportation
Services, Manager of the Urban Traffic Control System (UTCS).
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TABLE I
NETWORK-WIDE MOE IN THE NORMAL SCENARIO

The performance of each control system is evaluated based
on the following measures of effectiveness:

– average delay per vehicle (s/veh);
– average maximum queue length per intersection (veh);
– average standard deviation of queue lengths across ap-

proaches (veh);
– number of completed trips;
– average CO2 emission factors (gm/km);
– average travel time for selected routes (min).

Table I compares the performance of the BC against the
MARLIN-ATSC system with and without communication
among agents, i.e., MARLIN and MARL-I, respectively.

The analysis of the results shown in Table I leads to the
following findings.

– The two MARLIN-ATSC algorithms result in lower av-
erage delay, higher throughput, shorter queue length, and
stop time compared with those from the BC. The most
notable improvements are those in the average delay
(38% MARLIN versus BC), in the standard deviation
of the average queue length (31% MARLIN versus BC),
and in CO2 emission factors (30% MARLIN versus BC).

– These substantial improvements are due to not only the
intelligence of the RL algorithm but also the coordination
mechanism between the agents to reach a network-wide
set of actions that minimize long-term delay. This coor-
dination results in the so-called “metering” effect from
the upstream intersection to the downstream intersection
while accounting for the queues and delays at the down-
stream intersection. In fact, the tangible savings in the
standard deviation in the queue length is interesting be-
cause this means balanced queue among all intersection
approaches.

– MARL-I outperforms the BC in all the measures of
effectiveness (MOEs), most notably are the average in-

tersection delay (27%) and the CO2 emission factor
(28%). However, comparing MARLIN with MARL-I,
it is found that the latter experiences relatively higher
delays because the actions in MARL-I are only based on
locally collected data and, thereby, results in more vehi-
cles retained in the network at the end of the simulation
(6% throughput improvement in MARLIN versus 2.8%
throughput improvement in MARL-I).

Table I shows a very promising overall performance of
MARLIN. However, as shown in the wide range of average
delays among intersections, the improvements at some inter-
sections are much higher than the network averages. Therefore,
the spatial distribution of percentage improvement is presented
in Fig. 3.

It is important to study the effect of various control systems
on travel time and travel-time variability for selected key routes
in the lower downtown core of Toronto. Eight key routes are
defined, as shown in Fig. 4.

Route travel times and standard deviation in travel time for
the BC, MARL-I, and MARLIN scenarios are presented in
Table II. The routes in Table II are arranged in descending order
from the worst to the best in terms of percentage improvements
in average route time for MARLIN versus BC. To further study
the route travel times within the simulation hour, the travel
times for selected routes are plotted in Fig. 4. The analysis in
Table II and Fig. 4 leads to the following conclusions.

– It is clear that MARLIN outperforms MARL-I and BC in
all routes. The percentage improvements range from 4%
in route 1 to 30% in route 8. MARL-I outperforms BC
in almost all cases; the percentage improvements range
from 3% in route 5 to 15% in route 6 with the exception
of route 8, in which the BC scenario performs better than
MARL-I.
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Fig. 3. Spatial distribution of percentage average delay improvements for MARLIN versus BC.

Fig. 4. Average route travel time for selected routes.

– It is interesting to find that the Gardiner Expressway
East bound (EB) traffic (inbound) travel time improves
by 19% in the MARLIN scenario. Alleviating the con-
gestion on Spadina Street and York Street off-ramps
contributes the most to these savings. This clearly shows
the effect of downstream capacity on the freeway per-
formance. For the Gardiner West bound (WB) direction,

traffic was not as congested as the EB, but MARLIN still
attains 4% improvement in average route travel times.

– The most congested routes appear to be routes 7 and 8,
through which traffic originated at the west end of the
study area and destined in the downtown core (Spadina
Street and University Avenue). MARLIN achieves 30%
and 26% improvements in routes 7 and 8, respectively,
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TABLE II
ROUTE TRAVEL TIMES FOR BC, MARL-I, AND MARLIN

which reflects the superior effect of 2-D coordination
between agents.

– From observing the temporal distribution of route travel
time across the simulation hour, it is generally found that
MARLIN is stable and exhibits less variation compared
with the BC and MARL-I scenarios. While the BC
scenario exhibits the highest variability in travel time
(as shown in the standard deviation values in Table II),
MARL-I still shows some variations, most notably in the
two most congested routes (routes 7 and 8). MARLIN
shows stable route travel times in all routes.In terms of
computational complexity, each agent (intersection) con-
verges to the optimal policy with different convergence
speeds. The average time required to converge to the
minimum average delay per intersection is 60 simulation
runs (1 h each). The computational time for each learning
step (1 simulation/s) is 4.2 ms.

VI. CONCLUSION AND FUTURE WORK

In this paper, previous studies that tackled the ATSC problem
using MARL approaches have been reviewed, and the gaps
in literature have been highlighted. The major challenges for
using a MARL-based signal control system were the need
for coordination and the curse of dimensionality. To attain
the compromise of achieving coordination-based decentralized
adaptive real-time control without suffering from the curse of
dimensionality challenge that is associated with MARL tech-
niques, a MARLIN-ATSC system has been presented. In this
system, each agent plays a game with its immediate neighbors.
Each agent learns and converges to the best response policy
to all neighbors’ policies. This paper has demonstrated the
essence of MARLIN-ATSC on a large-scale urban network of
59 intersections in Downtown Toronto. Results were reported
for BC control systems (represented existing field conditions
using signal timing sheets provided by the City of Toronto),
MARL-I (represented MARLIN-ATSC Independent Mode
with no communication between agents), and MARLIN (rep-

resented MARLIN-ATSC Integrated Mode with coordination
between agents). Results showed that MARL-I and MARLIN
outperformed the BC in all the MOEs. However, comparing
MARLIN with MARL-I, it was found that the latter experiences
higher delays. In terms of route travel time, it was generally
found that MARLIN exhibited less average route travel time
and less variation of the temporal distribution across the sim-
ulation hour compared with the BC and MARL-I scenarios.
The daily economic benefits (i.e., travel-time savings) were
estimated to be around $53 000. MARLIN-ATSC would cost
approximately $1.2 million to implement across a network of
59 intersections. Consequently, the payback period is 23 days.

To quantify the benefits of MARLIN-ATSC relative to exist-
ing ATSC systems such as SCOOT, without approximation, the
following approaches could be used in the future: 1) Compare
simulation-based measures of MARLIN with real-life ob-
servations and benefits of SCOOT for SCOOT-controlled
intersections, and 2) use hardware-in-the-loop simulation
methodologies to replicate the logic of SCOOT within the
simulation software such as Paramics.
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