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Abstract. Recent algorithmic and theoretical advances in reinforcement learning (RL) have attracted widespread
interest. RL algorithms have appeared that approximate dynamic programming on an incremental basis. They
can be trained on the basis of real or simulated experiences, focusing their computation on areas of state space
that are actually visited during control, making them computationally tractable on very large problems. If each
member of a team of agents employs one of these algorithms, a new collective learning algorithm emerges for
the team as a whole. In this paper we demonstrate that such collective RL algorithms can be powerful heuristic
methods for addressing large-scale control problems.
Elevator group control serves as our testbed. It is a difficult domain posing a combination of challenges not

seen in most multi-agent learning research to date. We use a team of RL agents, each of which is responsible
for controlling one elevator car. The team receives a global reward signal which appears noisy to each agent due
to the effects of the actions of the other agents, the random nature of the arrivals and the incomplete observation
of the state. In spite of these complications, we show results that in simulation surpass the best of the heuristic
elevator control algorithms of which we are aware. These results demonstrate the power of multi-agent RL on a
very large scale stochastic dynamic optimization problem of practical utility.

Keywords: Reinforcement learning, multiple agents, teams, elevator group control, discrete event dynamic
systems

1. Introduction

Interest in developing capable learning systems is increasing within the multi-agent and
AI research communities (e.g., Weiss & Sen, 1996). Learning enables systems to be more
flexible and robust, and it makes them better able to handle uncertainty and changing
circumstances. This is especially important in multi-agent systems, where the designers
of such systems have often faced the extremely difficult task of trying to anticipate all
possible contingencies and interactions among the agents ahead of time. Much the same
could be said concerning the field of decentralized control, where policies for the control
stations are developed from a global vantage point, and learning does not play a role. Even
though executing the policies depends only on the information available at each control
station, the policies are designed in a centralized way, with access to a complete description
of the problem. Research has focused on what constitutes an optimal policy under a
given information pattern but not on how such policies might be learned under the same
constraints.
Reinforcement learning (RL) (Sutton&Barto, 1998; Bertsekas&Tsitsiklis, 1996) applies

naturally to the case of autonomous agents, which receive sensations as inputs and take
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actions that affect their environments in order to achieve their own goals. RL is based
on the idea that the tendency to produce an action should be strengthened (reinforced) if it
produces favorable results, andweakened if it produces unfavorable results. This framework
is appealing from a biological point of view, since an animal has built-in preferences but
does not always have a teacher to tell it exactly what action it should take in every situation.
If the members of a group of agents each employ an RL algorithm, the resulting collective

algorithm allows control policies to be learned in a decentralized way. Even in situations
where centralized information is available, it may be advantageous to develop control poli-
cies in a decentralized way in order to simplify the search through policy space. Although
it may be possible to synthesize a system whose goals can be achieved by agents with
conflicting objectives, this paper focuses on teams of agents that share identical objectives
corresponding directly to the goals of the system as a whole.
To demonstrate the power of multi-agent RL, we focus on the difficult problem of elevator

group supervisory control. Elevator systems operate in high-dimensional continuous state
spaces and in continuous time as discrete event dynamic systems. Their states are not fully
observable, and they are non-stationary due to changing passenger arrival rates. We use
a team of RL agents, each of which is responsible for controlling one elevator car. Each
agent uses artificial neural networks to store its action-value estimates. We compare a
parallel architecture, in which the agents share the same networks, with a decentralized
architecture, in which the agents have their own independent networks. In either case, the
team receives a global reward signal that is noisy from the perspective of each agent due in
part to the effects of the actions of the other agents. Despite these difficulties, our system
outperforms all of the heuristic elevator control algorithms known to us. We also analyze
the policies learned by the agents, and show that learning is relatively robust even in the
face of increasingly incomplete state information. These results suggest that approaches to
decentralized control using multi-agent RL have considerable promise.
In the following sections, we give some additional background onRL, introduce the eleva-

tor domain, describe in more detail the multi-agent RL algorithm and network architecture
we used, present and discuss our results, and finally draw some conclusions. For further
details on all these topics, see Crites (1996).

2. Reinforcement Learning

Machine learning researchers have focused primarily on supervised learning, where a
“teacher” provides the learning system with a set of training examples in the form of
input-output pairs. Supervised learning algorithms are useful in a wide variety of prob-
lems involving pattern classification and function approximation. However, there are many
problems in which training examples are costly or even impossible to obtain. RL can be
useful in these more difficult problems, where training information comes from a “critic”
providing a scalar evaluation of the output that was selected rather than specifying the best
output or a direction to change the output. In RL, one faces all the difficulties of supervised
learning combined with the additional difficulty of exploration, that is, of determining the
best output for any given input.
It is useful to distinguish between two types of RL tasks. In non-sequential tasks, agents

must learn mappings from situations to actions that maximize the expected immediate



ELEVATOR GROUP CONTROL 237

reward. In sequential tasks, agents must learn mappings from situations to actions that
maximize the expected long-term rewards. Sequential tasks are generally more difficult
because an agent’s actions can influence the situations it must face in the future and thus the
rewards that are available in the future. In these tasks, agents interactwith their environments
over extended periods of time, and they need to evaluate their decisions on the basis of their
long-term consequences.
From the perspective of control theory, RL algorithms are ways of finding approximate

solutions to stochastic optimal control problems. The agent is a controller, and the environ-
ment is a system to be controlled. The objective is to maximize some performance measure
over time. Given knowledge of the state transition probabilities and reward structure of the
environment, these problems can be solved in principle using dynamic programming (DP)
algorithms. However, although DP requires time polynomial in the number of states, in
many problems of interest there are so many states that the amount of time required makes
it infeasible to obtain an exact solution.
Some recent RL algorithms have been designed to perform DP in an incremental manner.

Unlike traditional DP, these algorithms do not require a priori knowledge of the state
transition probabilities and reward structure of the environment and can be used to improve
performance on-linewhile the agent and environment interact. This on-line learning focuses
computation onto the areas of state space that are actually visited during control. Thus,
when combined with suitable function approximation methods, RL algorithms can provide
computationally tractable ways to approximate the solutions of very large-scale stochastic
optimal control problems (Barto et al., 1995; Sutton & Barto, 1998; Bertsekas & Tsitsiklis,
1996).
The same focusing phenomenon can also be achieved with simulated on-line learning.

One can often construct a simulation model without explicitly obtaining the state transition
probabilities and reward structure of the environment (Sutton&Barto, 1998; Crites&Barto,
1996). (For an example of such a simulation model, see Section 3.3.) There are several
advantages to this use of a simulation model if it is sufficiently accurate. It is possible
to generate huge amounts of simulated experience very quickly, potentially accelerating
the learning process by many orders of magnitude over what would be possible using
actual experience. In addition, one need not be concerned about the performance level
of a simulated system during learning. A successful example of simulated on-line RL is
found in Tesauro’s TD-Gammon system (1992, 1994, 1995), which learned to play strong
master-level backgammon.
Research on multi-agent RL dates back at least to the work of the Russian mathematician

Tsetlin (1973) and others working in the field of learning automata (reviewed by Narendra
&Thathachar, 1989). A number of theoretical results have been obtained for non-sequential
RL tasks. Certain types of learning automata converge to an equilibrium point in zero-sum
and non-zero-sum repeated games. For teams, an equilibrium point is a local maximum (an
element of the game matrix that is the maximum of both its row and its column). However,
in more general non-zero-sum games, equilibrium points often provide poor rewards for
all players. A good example of this is the Prisoners’ Dilemma, where the only equilibrium
point produces the lowest total reward (Axelrod, 1984).
Starting in approximately 1993, a number of researchers began to investigate sequential

RL algorithms in multi-agent contexts. Although much of the work has been illustrated
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only in very simple abstract problems, several interesting applications have appeared that
have pointed to the promise of sequential multi-agent RL. Bradtke (1993) described some
initial experiments using RL for the decentralized control of a flexible beam. The task
is to efficiently damp out disturbances of a beam by applying forces at discrete locations
and times. He used 10 independent adaptive controllers distributed along the beam. Each
controller attempted to minimize its own local costs and observed only its own local portion
of the state information. Dayan & Hinton (1993) proposed a managerial hierarchy they
called Feudal RL. In this scheme, higher-level managers set tasks for lower level managers,
and reward them as they see fit. Since the rewards may be different at different levels of the
hierarchy, this is not a team. Furthermore, only a single action selected at the lowest level
actually affects the environment, so in some sense, this is a hierarchical architecture for
a single agent. Tan (1993) reported on some simple hunter-prey experiments with multi-
agent RL. His focus was on the sharing of sensory information, policies, and experience
among the agents. Shoham & Tennenholtz (1993) investigated the social behavior that can
emerge from agents with simple learning rules. They focused on two simple n-k-g iterative
games, where n agents meet k at a time (randomly) to play game g. Littman & Boyan
(1993) described a distributed RL algorithm for packet routing based on the asynchronous
Bellman-Ford algorithm. Their scheme uses a single Q-function, where each state entry
in the Q-function is assigned to a node in the network which is responsible for storing
and updating the value of that entry. This differs from most other work on distributed RL,
where an entire Q-function, not just a single entry, must be stored at each node. Markey
(1994) applied parallel Q-learning to the problem of controlling a vocal tract model with 10
degrees of freedom. He discussed two architectures equivalent to the distributed and parallel
architectures we describe in Section 4.4. Each agent controlled one degree of freedom in
the action space and distinguished Q-values based only on its own action selections.
In addition to the multi-agent RL research concerned with team problems, a significant

amount of work has focused on zero-sum games, where a single agent learns to play against
an opponent. One of the earliest examples of this is Samuel’s (1963) checkers-playing
program. A more recent example is Tesauro’s TD-Gammon program (1992, 1994, 1995).
These types of programs often learn using self-play, and they can generally be viewed
as single agents. Littman (1994, 1996) provided a detailed discussion of RL applied to
zero-sum games, both in the case where the agents alternate their actions and where they
take them simultaneously. Little work has been done on multi-agent RL in more general
non-zero-sum games. Sandholm & Crites (1996) studied the behavior of multi-agent RL in
the context of the iterated prisoners’ dilemma. They showed that Q-learning agents are able
to learn the optimal strategy against the fixed opponent Tit-for-Tat. They also investigated
the behavior that results when two Q-learning agents face each other.

3. Elevator Group Control

This section introduces the problem of elevator group control, which serves as our testbed
for multi-agent RL. It is a familiar problem to anyone who has ever used an elevator
system, but in spite of its conceptual simplicity, it poses significant difficulties. An optimal
policy for elevator group control is not known, so we use existing control algorithms as
standards for comparison. The elevator domain provides an opportunity to compare parallel
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and distributed control architectures in which each agent controls one elevator car, and to
monitor the amount of degradation that occurs as the agents face decreasing levels of state
information.
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Figure 1. Elevator system schematic diagram.

Figure 1 is a schematic diagram of an elevator system (Lewis, 1991). The elevator cars
are represented as filled boxes in the diagram; ‘+’ represents a hall call, or someone wanting
to enter a car; ‘−’ represents a car call, or someone wanting to leave a car. The left side
of a shaft represents upward moving cars and calls. The right side of a shaft represents
downward moving cars and calls. Cars therefore move in a clockwise direction around the
shafts.
Section 3.1 considers the nature of different passenger arrival patterns and their impli-

cations. Section 3.2 reviews a variety of elevator control strategies from the literature.
Section 3.3 describes the particular simulated elevator system that will be the focus in the
remainder of this paper.

3.1. Passenger Arrival Patterns

Elevator systems are driven by passenger arrivals. Arrival patterns vary during the course
of the day. In a typical office building, the morning rush hour brings a peak level of up
traffic, while a peak in down traffic occurs during the afternoon. Other parts of the day



240 R.H. CRITES AND A.G. BARTO

have their own characteristic patterns. Different arrival patterns have very different effects,
and each pattern requires its own analysis. Up-peak and down-peak elevator traffic are
not simply equivalent patterns in opposite directions, as one might initially guess. Down-
peak traffic has many arrival floors and a single destination, while up-peak traffic has a
single arrival floor and many destinations. This distinction has significant implications.
For example, in light up traffic, the average passenger waiting times can be kept very low
by keeping idle cars at the lobby where they will be immediately available for arriving
passengers. In light down traffic, waiting times will be longer since it is not possible to
keep an idle car at every upper floor in the building, and therefore additional waiting time
will be incurred while cars move to service hall calls. The situation is reversed in heavy
traffic. In heavy up traffic, each car may fill up at the lobby with passengers desiring to
stop at many different upper floors. The large number of stops will cause significantly
longer round-trip times than in heavy down traffic, where each car may fill up after only
a few stops at upper floors. For this reason, down-peak handling capacity is much greater
than up-peak capacity. Siikonen (1993) illustrates these differences in an excellent graph
obtained through extensive simulations.
Since up-peak handling capacity is a limiting factor, elevator systems are designed by

predicting the heaviest likely up-peak demand in a building, and then determining a config-
uration that can accomodate that demand. If up-peak capacity is sufficient, then down-peak
capacity generally will be as well. Up-peak traffic is the easiest type to analyze, since all
passengers enter cars at the lobby, their destination floors are serviced in ascending order,
and empty cars then return to the lobby. The standard capacity calculations (Strakosch,
1983; Siikonen, 1993) assume that each car leaves the lobby with M passengers (80 to
100 percent of its capacity) and that the average passenger’s likelihood of selecting each
destination floor is known. Then probability theory is used to determine the average number
of stops needed on each round trip. From this one can estimate the average round trip time
τ . The interval I = τ

L represents the average amount of time between car arrivals to the
lobby, whereL is the number of cars. Assuming that the cars are evenly spaced, the average
waiting time is one half the interval. In reality, the average wait is somewhat longer.
The only control decisions in pure up traffic are to determine when to open and close

the elevator doors at the lobby. These decisions affect how many passengers will board
an elevator at the lobby. Once the doors have closed, there is really no choice about the
next actions: the car calls registered by the passengers must be serviced in ascending order
and the empty car must then return to the lobby. Pepyne & Cassandras (1996) show that
the optimal policy for handling pure up traffic is a threshold-based policy that closes the
doors after an optimal number of passengers have entered the car. The optimal threshold
depends on the traffic intensity, and it may also be affected by the number of car calls already
registered and by the state of the other cars. Of course, up traffic is seldom completely pure.
Some method must be used for assigning any down hall calls.
More general two-way traffic comes in two varieties. In two-way lobby traffic, up-

moving passengers arrive at the lobby and down-moving passengers depart from the lobby.
Compared with pure up traffic, the round trip times will be longer, but more passengers
will be served. In two-way interfloor traffic, most passengers travel between floors other
than the lobby. Interfloor traffic is more complex than lobby traffic in that it requires almost
twice as many stops per passenger, further lengthening the round trip times.
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Two-way and down-peak traffic patterns require many more decisions than does pure
up traffic. After leaving the lobby, a car must decide how high to travel in the building
before turning, and at what floors to make additional pickups. Because more decisions are
required in a wider variety of contexts, more control strategies are also possible in two-way
and down-peak traffic situations. For this reason, a down-peak traffic pattern was chosen
as a testbed for our research. Before describing the testbed in detail, we review various
elevator control strategies from the literature.

3.2. Elevator Control Strategies

Theoldest relay-based automatic controllers used theprinciple of collective control (Strakosch,
1983; Siikonen, 1993), where cars always stop at the nearest call in their running direction.
One drawback of this scheme is that there is no means to avoid the phenomenon called
bunching, where several cars arrive at a floor at about the same time, making the interval,
and thus the average waiting time, much longer. Advances in electronics, including the
advent of microprocessors, made possible more sophisticated control policies.
The approaches to elevator control discussed in the literature generally fall into the fol-

lowing categories, often falling into more than one category. Unfortunately the descriptions
of the proprietary algorithms are often rather vague, since they are written for marketing
purposes and are specifically not intended to be of benefit to competitors. For this reason,
it is difficult to ascertain the relative performance levels of many of these algorithms, and
there is no accepted definition of the current state of the art (Ovaska, 1992).

3.2.1. Zoning Approaches In a zoning approach (Strakosch, 1983), each car is as-
signed a zone of the building. It answers hall calls within its zone and parks there when it
is idle. The goal of the zoning approach is to keep the cars reasonably well separated and
thus keep the interval down. While this approach is quite robust in heavy traffic, it gives
up a significant amount of flexibility. Sakai & Kurosawa (1984) described a concept called
area control that is related to zoning. If possible, it assigns a hall call to a car that already
must stop at that floor due to a car call. Otherwise, a car within an area α of the hall call
is assigned if possible. The area α is a control parameter that affects both the average wait
time and the power consumption.

3.2.2. Search-Based Approaches Another control strategy is to search through the
space of possible car assignments, selecting the one that optimizes some criterion such as
the average waiting time. Greedy search strategies perform immediate call assignment,
that is, they assign hall calls to cars when they are first registered and never reconsider
those assignments. Non-greedy algorithms postpone their assignments or reconsider them
in light of updated information they may receive about additional hall calls or passenger
destinations. Greedy algorithms give up some measure of performance due to their lack
of flexibility but also require less computation time. In western countries, an arriving car
generally signalswaiting passengerswhen it begins to decelerate (Siikonen, 1993), allowing
the use of a non-greedy algorithm. The custom in Japan is to signal the car assignment
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immediately upon call registration. This type of signaling requires the use of a greedy
algorithm.
Tobita et al. (1991) described a system in which car assignment occurs when a hall button

is pressed. The car assigned is the one that minimizes a weighted sum of predicted wait
time, travel time, and number of riders. A fuzzy rule-based system picks the coefficients
and estimating functions. Simulations are used to verify their effectiveness.
Receding horizon controllers are examples of non-greedy search-based approaches. After

every event, they perform an expensive search for the best assignment of hall calls assuming
no new passenger arrivals. Closed-loop control is achieved by re-calculating a new open-
loop plan after every event. The weaknesses of this approach are its computational demands
and its lack of consideration of future arrivals. Examples of receding horizon controllers
are Finite Intervisit Minimization (FIM) and Empty the System Algorithm (ESA) (Bao et
al., 1994). FIM attempts to minimize squared waiting times, and ESA attempts to minimize
the length of the current busy period.

3.2.3. Rule-Based Approaches In some sense, all control policies could be considered
rule-based: IF situation, THEN action. However, here we are more narrowly considering
the type of production systems commonly used in Artificial Intelligence. Ujihara & Tsuji
(1988) described a system that uses expert-system and fuzzy-logic technologies. Claiming
that experts in group-supervisory control have the experience and knowledge necessary to
shorten waiting times under various traffic conditions, they admitted that expert knowledge
is fragmentary, hard to organize, and difficult to incorporate. They created a rule base by
comparing the decisions made by a conventional algorithm with decisions determined by
simulated annealing. The discrepancies were then analyzed by the experts, whose knowl-
edge about solving such problems was used to create fuzzy control rules. The fuzziness
lies in the IF part of the rules. Ujihara & Amano (1994) described the latest changes to
this system. A previous version used a fixed evaluation formula based on the current car
positions and call locations. A more recent version considers future car positions and prob-
able future hall calls. For example, one rule is IF (there is a hall call registered on an upper
floor) AND (there are a large number of cars ascending towards the upper floors) THEN
(assign one of the ascending cars on the basis of estimated time of arrival). Note that this
is an immediate call allocation algorithm, and the consequent of this particular rule about
assigning cars on the basis of estimated time of arrival bears some similarity to the greedy
search-based algorithms described above.

3.2.4. Other Heuristic Approaches The Longest Queue First (LQF) algorithm assigns
upward-moving cars to the longest waiting queue, and the Highest Unanswered Floor First
(HUFF) algorithm assigns upward-moving cars to the highest queue with people waiting
(Bao et al., 1994). Both of these algorithms are designed specifically for down-peak traffic.
They assign downward-moving cars to any unassigned hall calls they encounter. The
Dynamic Load Balancing (DLB) algorithm attempts to keep the cars evenly spaced by
assigning contiguous non-overlapping sectors to each car in a way that balances their loads
(Lewis, 1991). DLB is a non-greedy algorithm because it reassigns sectors after every
event.
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3.2.5. Adaptive and Learning Approaches Imasaki et al. (1991) described a system
that uses a fuzzy neural network to predict passenger waiting time distributions for various
sets of control parameters. Their system adjusts the parameters by evaluating alternative
candidate parameters with the neural network. They did not explain what control algorithm
is actually used, what its parameters are, or how the network is trained.
A system described by Tobita et al. (1991) and Fujino et al. (1992) uses a greedy control

algorithm that combines multiple objectives such as wait time, travel time, crowding, and
power consumption. The weighting of these objectives is accomplished using parameters
that are tuned on-line. A module called the learning function unit collects traffic statistics
and attempts to classify the current traffic pattern. The tuning function unit generates
parameter sets for the current traffic pattern and tests them using a built-in simulator. The
best parameters are then used to control the system. Searching the entire parameter space
would be prohibitively expensive, so heuristics are used about which parameter sets to test.
Levy et al. (1977) described a system that uses dynamic programming (DP) off-line to

minimize the expected time needed for completion of the current busy period. No discount
factor is used, since it is assumed that the values are finite. The trouble with using DP
in this way is that the state space is very large, requiring drastic simplification. Levy et
al. used several methods to keep the size of the state space manageable: they considered
a building with only 2 cars and 8 floors, where the number of buttons that could be on
simultaneously was restricted, the states of the buttons were restricted to binary values (i.e.,
elapsed times were discarded), and the cars had unlimited capacity. Construction of the
transition probability matrix is the principle part of the procedure, and it assumes that the
intensity of Poisson arrivals at each floor is known. Value iteration or policy iteration is
then performed to obtain the solution.
Markon et al. (1994) devised a system that trains a neural network to perform immediate

call allocation. There are three phases of training. In phase one, while the system is being
controlled by an existing controller (the FLEX-8820 Fuzzy/AI Group Control System of
Fujitec), supervised learning is used to train the network to predict the hall call service
times. This first phase of training is used to learn an appropriate internal representation,
i.e., weights from the input layer to the hidden layer of the network. At the end of the first
phase of training, those weights are fixed. In phase two, the output layer of the network
is retrained to emulate the existing controller. In phase three, single weights in the output
layer of the network are perturbed, and the resulting performance is measured on a traffic
sample. The weights are then modified in the direction of improved performance. This
can be viewed as a form of non-sequential RL. The single-stage reward is determined by
measuring the system’s performance on a traffic sample. The input representation uses 25
units for each car, and the output representation uses one unit for each car. Hall calls are
allocated to the car corresponding to the output unit with the highest activation. Markon
et al. also described a very clever way of incorporating the permutational symmetry of the
problem into the architecture of their network. As they say, “If the states of two cars are
interchanged, the outputs should also be interchanged.” This is done by having as many
sets of hidden units as there are cars, and then explicitly linking together the appropriate
weights.
This system was tested in a simulation with 6 cars and 15 floors. In a “typical building,”

trained on 900 passengers per hour, there was a very small improvement of approximately
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one second in the average wait time over the existing controller. In a more “atypical”
building with uniformly distributed origin and destination floors and 1500 passengers per
hour, the improvement in average wait time was almost 4 seconds. One advantage of this
system is that it can maintain an adequate service level from the beginning since it starts
with a pre-existing controller. On the other hand, it is not clear whether this also may trap
the controller in a suboptimal region of policy space. It would be very interesting to use
this centralized, immediate call allocation network architecture as part of a sequential RL
algorithm.

3.3. The Elevator Testbed

The particular elevator system we study in this paper is a simulated 10-story building with
4 elevator cars. The simulator was written by Lewis (1991). Passenger arrivals at each
floor are assumed to be Poisson, with arrival rates that vary during the course of a day.
Our simulations use a traffic profile (Bao et al., 1994) that specifies arrival rates for every
5-minute interval during a typical afternoon down-peak rush hour. Table 1 shows the mean
number of passengers arriving at each of floors 2 through 10 during each 5-minute interval
who are headed for the lobby. In addition, there is inter-floor traffic which varies from 0%
to 10% of the traffic to the lobby.

Table 1. The down-peak traffic profile.

Time 00 05 10 15 20 25 30 35 40 45 50 55

Rate 1 2 4 4 18 12 8 7 18 5 3 2

3.3.1. System Dynamics The system dynamics are approximated by the following
parameters:

• Floor time (the time to move one floor at maximum speed): 1.45 secs.

• Stop time (the time needed to decelerate, open and close the doors, and accelerate
again): 7.19 secs.

• Turn time (the time needed for a stopped car to change direction): 1 sec.

• Load time (the time for one passenger to enter or exit a car): random variable from a
20th order truncated Erlang distribution with a range from 0.6 to 6.0 secs and a mean
of 1 sec.

• Car capacity: 20 passengers.

The simulator is quite detailed and is certainly realistic enough for our purposes. However,
a few minor deviations from reality should be noted. In the simulator, a car can accelerate
to full speed or decelerate from full speed in a distance of only one half of a floor, while the
distances would be somewhat longer in a real system. Further, the simulated acceleration
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and deceleration times are always the same, whereas in a real system they vary depending
on the speed of the elevator. For example, an express car descending from the tenth floor at
top speed will take longer to decelerate at the first floor than a car that is descending from
the second floor. The simulator also allows the cars to commit to stopping at a floor when
they are only one half of a floor away. Although this is not realistic for cars moving at top
speed, the concept of making stopping decisions at suitable positions is valid.
Although the elevator cars in this system are homogeneous, the learning techniques

described in this paper can also be used in more general situations, e.g., where there are
several express cars or cars that only service some subset of the floors.

3.3.2. State Space The state space is continuous because it includes the elapsed times
since any hall calls were registered, which are real-valued. Even if these real values are
approximated as binary values, the size of the state space is still immense. Its components
include 218 possible combinations of the 18 hall call buttons (up and down buttons at each
landing except the top and bottom), 240 possible combinations of the 40 car buttons, and
184 possible combinations of the positions and directions of the cars (rounding off to the
nearest floor). Other parts of the state are not fully observable, for example, the exact
number of passengers waiting at each floor, their exact arrival times, and their desired
destinations. Ignoring everything except the configuration of the hall and car call buttons
and the approximate position and direction of the cars, we obtain an extremely conservative
estimate of the size of a discrete approximation to the continuous state space:

218 · 240 · 184 ≈ 1022 states.

3.3.3. Control Actions Each car has a small set of primitive actions. If it is stopped
at a floor, it must either “move up” or “move down”. If it is in motion between floors,
it must either “stop at the next floor” or “continue past the next floor”. Due to passenger
expectations, there are two constraints on these actions: a car cannot pass a floor if a
passenger wants to get off there and cannot turn until it has serviced all the car buttons in its
present direction. We added three additional heuristic constraints in an attempt to build in
some primitive prior knowledge: a car cannot stop at a floor unless someone wants to get on
or off there, it cannot stop to pick up passengers at a floor if another car is already stopped
there, and given a choice between moving up and down, it should prefer to move up (since
the down-peak traffic tends to push the cars toward the bottom of the building). Because of
this last constraint, the only real choices left to each car are the stop and continue actions.
The actions of the elevator cars are executed asynchronously since they may take different
amounts of time to complete.

3.3.4. Performance Criteria The performance objectives of an elevator system can be
defined in many ways. One possible objective is to minimize the average wait time, which
is the time between a passenger’s arrival and entry into a car. Another possible objective
is to minimize the average system time, which is the sum of the wait time and the travel
time. A third possible objective is to minimize the percentage of passengers that wait longer
than some dissatisfaction threshold (usually 60 seconds). Another common objective is to
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minimize the average squared wait time. We chose this latter objective since it tends to
keep the wait times low while also encouraging fair service. For example, wait times of 2
and 8 seconds have the same average (5 seconds) as wait times of 4 and 6 seconds. But the
average squared wait times are different (34 for 2 and 8 versus 26 for 4 and 6).

4. The Algorithm and Network Architecture

This section describes the multi-agent RL algorithm that we applied to elevator group
control. In our scheme, each agent is responsible for controlling one elevator car. The
reward structure of each agent’s environment is defined in terms of the waiting times of the
passengers, and it is more natural to refer to costs rather than rewards because we wish to
minimize the average wait time. Each agent uses a modification of Q-learning (Watkins,
1989) for discrete-event systems (Bradtke&Duff, 1995). Together, they employ a collective
form of RL. We begin by describing the modifications needed to extend Q-learning to a
discrete-event framework, and then derive a method for determining appropriate reward
signals in the face of uncertainty about exact passenger arrival times. Then we describe the
algorithm, the feedforward networks used to store the Q-values, and the distinction between
parallel and distributed versions of the algorithm.

4.1. Discrete-Event Reinforcement Learning

Elevator systems can be modeled as discrete event systems (Cassandras, 1993), where
significant events (such as passenger arrivals) occur at discrete times, but the amount of
time between events is a real-valued variable. In such systems, the constant discount factor
γ used in most discrete-time RL algorithms is inadequate. This problem can be approached
using a variable discount factor that depends on the amount of time between events. In this
case, the cost-to-go is defined as an integral rather than as an infinite sum, as follows:

∞∑

t=0

γtct becomes
∫ ∞

0
e−βτ cτdτ ,

where ct is the immediate cost at discrete time t, cτ is the instantaneous cost at continuous
time τ (the sum of the squaredwait times of all currently waiting passengers), and β controls
the rate of exponential decay. In the experiments described in this paper β = 0.01. Since
the wait times are measured in seconds, we scale down the instantaneous costs cτ by a
factor of 106 to keep the cost-to-go values from becoming exceedingly large.
Because elevator system events occur randomly in continuous time, the branching factor is

effectively infinite, which complicates the use of algorithms that require explicit lookahead.
Therefore, we employ a discrete event version of the Q-learning algorithm since it considers
only events encountered in actual system trajectories anddoes not require explicit knowledge
of the state transition probabilities. Bradtke & Duff (1995) extended the Q-learning update
rule of Watkins (1989) to the following discrete event form:

∆Q̂(x, a) = α · [
∫ ty

tx

e−β(τ−tx)cτdτ + e−β(ty−tx) min
b

Q̂(y, b)− Q̂(x, a)],
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where action a is taken from state x at time tx, the next decision is required from state y
at time ty , α is the step-size parameter, and cτ and β are defined as above. The quantity
e−β(ty−tx) acts as a variable discount factor that depends on the amount of time between
events.
Bradtke & Duff (1995) considered the case in which cτ is constant between events. We

extend their formulation to the case in which cτ is quadratic, since the goal is to minimize
squared wait times. The integral in the Q-learning update rule then takes the form:

∫ ty

tx

∑

p

e−β(τ−tx)(τ − tx + wp)2dτ,

where wp is the amount of time each passenger p waiting at time ty has already waited at
time tx. (Special care is needed to handle any passengers that begin or end waiting between
tx and ty . See Section 4.2.1.)
This integral can be solved by parts to yield:

∑

p

e−βwp [
2
β3

+
2wp

β2
+

w2
p

β
]− e−β(wp+ty−tx)[

2
β3

+
2(wp + ty − tx)

β2
+

(wp + ty − tx)2

β
].

A difficulty arises in using this formula since it requires knowledge of the waiting times
of all waiting passengers. However, only the waiting times of passengers who press hall
call buttons are known in a real elevator system. The number of subsequent passengers to
arrive and their exact waiting times are not available. We examine two ways of dealing
with this problem, which we call omniscient and on-line reinforcement schemes.
Since the simulator has access to the waiting times of all passengers, it could use this

information to produce the necessary reinforcement signals. We call this the omniscient
reinforcement scheme, since it requires information that is not available in a real system.
Note that it is not the controller that receives this extra information, however, but rather the
critic that is evaluating the controller. For this reason, even if the omniscient reinforcement
scheme is used during the design phase of an elevator controller on a simulated system,
the resulting trained controller can be installed in a real system without requiring any extra
knowledge.
The other possibility is to let the system learn using only information that would be

available to a real system on-line. Such an on-line reinforcement scheme assumes only that
the waiting time of the first passenger in each queue is known (which is the elapsed button
time). If the Poisson arrival rate λ for each queue is known or can be estimated, the Gamma
distribution can be used to estimate the arrival times of subsequent passengers. The time
until the nth subsequent arrival follows the Gamma distribution Γ(n, 1

λ ). For each queue,
subsequent arrivals will generate the following expected costs during the first b seconds
after the hall button has been pressed:

∞∑

n=1

∫ b

0
(prob nth arrival occurs at time τ ) · (cost given arrival at time τ ) dτ

=
∞∑

n=1

∫ b

0

λnτn−1e−λτ

(n− 1)!

∫ b−τ

0
w2e−β(w+τ)dw dτ =

∫ b

0

∫ b−τ

0
λw2e−β(w+τ)dw dτ.
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This integral can also be solved by parts to yield expected costs. A general solution is
provided in Section 4.2.2. As described in Section 5.4, using the on-line reinforcement
scheme produces results that are almost as good as those obtained with the omniscient
reinforcement scheme.

4.2. Collective Discrete-Event Q-Learning

There are two main types of elevator system events. Events of the first type are important
in calculating waiting times, and therefore are important in calculating the reinforcement
signal used by the RL algorithm. These include passenger arrivals and transfers in and out
of cars in the omniscient case, or hall button events in the on-line case. The second type are
car arrival events, which are potential decision points for the RL agents controlling each
car. A car in motion between floors generates a car arrival event when it reaches the point
at which it must decide whether to stop at, or continue past, the next floor. In some cases,
cars are constrained to take a particular action, for example, stopping at the next floor if
a passenger wants to get off there. An agent faces a decision point only when it has an
unconstrained choice of actions.

4.2.1. CalculatingOmniscientReinforcements In theomniscient reinforcement scheme,
accumulated cost is updated incrementally after every passenger arrival event (when a pas-
senger arrives at a queue), passenger transfer event (when a passenger gets on or off of a
car), and car arrival event (when a control decision is made). These incremental updates are
a natural way of dealing with the discontinuities in cost that arise when passengers begin or
end waiting between a car’s decisions, e.g., when another car picks up waiting passengers.
The amount of cost accumulated between events is the same for all the cars since they
share the same objective function, but the amount of cost each car accumulates between its
decisions is different since the cars make their decisions asynchronously. Therefore, each
car i has an associated storage location,R[i], where the total discounted cost it has incurred
since its last decision (at time d[i]) is accumulated.
At the time of each event, the following computations are performed: Let t0 be the time

of the last event and t1 be the time of the current event. For each passenger p that has been
waiting between t0 and t1, letw0(p) andw1(p) be the total time that passenger p has waited
at t0 and t1 respectively. Then for each car i,

∆R[i] =
∑

p

e−β(t0−d[i])(
2
β3

+
2w0(p)

β2
+

w2
0(p)
β

)− e−β(t1−d[i])(
2
β3

+
2w1(p)

β2
+

w2
1(p)
β

).

4.2.2. Calculating On-line Reinforcements In the on-line reinforcement scheme, ac-
cumulated cost is updated incrementally after every hall button event (signaling the arrival
of the first waiting passenger at a queue or the arrival of a car to pick up any waiting pas-
sengers at a queue) and car arrival event (when a control decision is made). We assume
that a passenger ceases to wait when a car arrives to service the passenger’s queue, since it
is not possible to know exactly when each passenger boards a car. The Poisson arrival rate
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λ for each queue is estimated as the reciprocal of the last inter-button time for that queue,
i.e., the amount of time from the last service until the button was pushed again. However, a
ceiling of λ̂ ≤ 0.04 passengers per second is placed on the estimated arrival rates to prevent
any very small inter-button times from creating huge penalties that might destabilize the
cost-to-go estimates.
At the time of each event, the following computations are performed: Let t0 be the time

of the last event and t1 be the time of the current event. For each hall call button b that was
active between t0 and t1, let w0(b) and w1(b) be the elapsed time of button b at t0 and t1
respectively. Then for each car i,

∆R[i] = e−β(t0−d[i])
∑

b

{2λ̂b(1− e−β(t1−t0))
β4

+

(
2
β3

+
2w0(b)

β2
+

w2
0(b)
β

)− e−β(t1−t0)(
2
β3

+
2w1(b)

β2
+

w2
1(b)
β

) +

λ̂b[(
2w0(b)

β3
+

w2
0(b)
β2

+
w3

0(b)
3β

)− e−β(t1−t0)(
2w1(b)

β3
+

w2
1(b)
β2

+
w3

1(b)
3β

)]}.

4.2.3. Making Decisions and Updating Q-Values A car moving between floors gen-
erates a car arrival event when it reaches the point at which it must decide whether to stop at
the next floor or to continue past the next floor. In some cases, cars are constrained to take
a particular action, for example, stopping at the next floor if a passenger wants to get off
there. An agent faces a decision point only when it has an unconstrained choice of actions.
The algorithm used by each agent for making decisions and updating its Q-value estimates
is as follows:

1. At time tx, observing state x, car i arrives at a decision point. It selects an action a
using the Boltzmann distribution over its Q-value estimates:

Pr(stop) =
eQ(x,cont)/T

eQ(x,stop)/T + eQ(x,cont)/T ,

where T is a positive “temperature” parameter that is “annealed” (decreased) during
learning. The value of T controls the amount of randomness in the selection of actions.
At the beginning of learning, when the Q-value estimates are very inaccurate, high
values of T are used, which give nearly equal probabilities to each action. Later in
learning, when the Q-value estimates are more accurate, lower values of T are used,
which give higher probabilities to actions that are thought to be superior, while still
allowing some exploration to gather more information about the other actions. As
discussed in Section 5.3, choosing a slow enough annealing schedule is particularly
important in multi-agent settings.

2. Let the next decision point for car i be at time ty in state y. After all cars (including
car i) have updated their R[·] values as described above, car i adjusts its estimate of
Q(x, a) toward the following target value:
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R[i] + e−β(ty−tx) min
{stop,cont}

Q̂(y, ·).

Car i then resets its cost accumulator R[i] to zero.

3. Let x← y and tx ← ty . Go to step 1.

4.3. The Networks Used to Store the Q-Values

Using lookup tables to store the Q-values is ruled out for such a large system. Instead,
we used feedforward neural networks and the error backpropagation algorithm (Rumelhart
et al., 1986). The networks receive some of the state information as input, and produce
Q-value estimates as output. The Q-value estimates can be written as Q̂(x, a, θ), where θ
is a vector of the parameters or weights of the networks. The weight update equation is:

∆θ = α[R[i] + e−β(ty−tx) min
{stop,cont}

Q̂(y, ·, θ)− Q̂(x, a, θ)]▽θ Q̂(x, a, θ),

where α is a positive step-size parameter, and the gradient ▽θQ̂(x, a, θ) is the vector of
partial derivatives of Q̂(x, a, θ) with respect to each component of θ.
At the start of learning, the weights of each network are initialized to be uniform random

numbers between −1 and +1. Some experiments in this paper use separate single-output
networks for each action-value estimate, while others use one network with multiple output
units, one for each action. Our basic network architecture for pure down traffic uses 47
input units, 20 hidden sigmoid units, and 1 or 2 linear output units. The input units are as
follows:

• 18 units: Two units encode information about each of the nine down hall buttons. A
real-valued unit encodes the elapsed time if the button has been pushed, and a binary
unit is on (= 1) if the button has not been pushed.

• 16 units: Each of these units represents a possible location and direction for the car
whose decision is required. Exactly one of these units is on at any given time. Note
that each car has a different egocentric view of the state of the system.

• 10 units: These units each represent one of the 10 floors where the other cars may
be located. Each car has a “footprint” that depends on its direction and speed. For
example, a stopped car causes activation only of the unit corresponding to its current
floor, but a moving car causes activation of several units corresponding to the floors it is
approaching, with the unit representing the closest floor showing the highest activation.
Activations caused by the various cars are additive. No information is provided about
which one of the other cars is at a particular location.

• 1 unit: This unit is on if the car whose decision is required is at the highest floor with a
waiting passenger.
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• 1 unit: This unit is on if the car whose decision is required is at the floor with the
passenger that has been waiting for the longest amount of time.

• 1 unit: The bias unit is always on.

In Section 5, we introduce other representations, including some with more restricted
state information.

4.4. Parallel and Decentralized Implementations

Each elevator car is controlled by a separate Q-learning agent. We experimented with both
parallel and decentralized implementations. In parallel implementations, the agents use a
central set of shared networks, allowing them to learn from each other’s experiences, but
forcing them to learn identical policies. In totally decentralized implementations, the agents
have their own networks, allowing them to specialize their control policies. In either case,
none of the agents is given explicit access to the actions of the other agents. Cooperation
has to be learned indirectly via the global reinforcement signal. Each agent faces added
stochasticity and non-stationarity because its environment contains other learning agents.

5. Results and Analysis

5.1. Basic Results Versus Other Algorithms

Since an optimal policy for the elevator group control problem is unknown, we compared
our algorithm with other heuristic algorithms, including the best of which we were aware.
The algorithms were: SECTOR, a sector-based algorithm similar to what is used in many
actual elevator systems; DLB, Dynamic Load Balancing, attempts to equalize the load of all
cars; HUFF, Highest Unanswered Floor First, gives priority to the highest floor with people
waiting; LQF, Longest Queue First, gives priority to the queue with the person who has
been waiting for the longest amount of time; FIM, Finite Intervisit Minimization, a receding
horizon controller that searches the space of admissible car assignments to minimize a load
function; ESA, Empty the System Algorithm, a receding horizon controller that searches
for the fastest way to “empty the system” assuming no new passenger arrivals. FIM is very
computationally intensive, and would be difficult to implement in real time in its present
form. ESA uses queue length information that would not be available in a real elevator
system. ESA/nq is a version of ESA that uses arrival rate information to estimate the queue
lengths. For more details, see Bao et al. (1994). RLp and RLd denote the RL controllers,
parallel and decentralized. The RL controllers each learned over 60,000 hours of simulated
elevator time, which took four days on a 100 MIPS workstation.
The results for all the algorithms were averaged over 30 hours of simulated elevator time

to ensure their statistical significance. The averagewaiting times listed below for the trained
RL algorithms are correct to within ±0.13 at a 95% confidence level, the average squared
waiting times are correct to within±5.3, and the average system times are correct to within
±0.27. Table 2 shows the results for the traffic profile with down traffic only. Table 3 shows
the results for the down-peak traffic profile with up and down traffic, including an average
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of 2 up passengers per minute at the lobby. The algorithm learned during down-only traffic,
yet it generalized well when up traffic was added and upward moving cars were forced to
stop for any upward hall calls. Table 4 shows the results for the down-peak traffic profile
with up and down traffic, including an average of 4 up passengers per minute at the lobby.
This time there was twice as much up traffic, and the RL agents generalized extremely well
to this new situation.
One can see that both the RL systems achieved very good performance, most notably

as measured by system time (the sum of the wait and travel time), a measure that was not
directly being minimized. Surprisingly, the decentralized RL system was able to achieve
as good a level of performance as the parallel RL system.

Table 2. Results for down-peak profile with down traffic only.

Algorithm AvgWait SquaredWait SystemTime Percent>60 secs

SECTOR 21.4 674 47.7 1.12
DLB 19.4 658 53.2 2.74

BASIC HUFF 19.9 580 47.2 0.76
LQF 19.1 534 46.6 0.89
HUFF 16.8 396 48.6 0.16
FIM 16.0 359 47.9 0.11
ESA/nq 15.8 358 47.7 0.12
ESA 15.1 338 47.1 0.25

RLp 14.8 320 41.8 0.09
RLd 14.7 313 41.7 0.07

Table 3. Results for down-peak profile with up and down traffic.

Algorithm AvgWait SquaredWait SystemTime Percent>60 secs

SECTOR 27.3 1252 54.8 9.24
DLB 21.7 826 54.4 4.74

BASIC HUFF 22.0 756 51.1 3.46
LQF 21.9 732 50.7 2.87
HUFF 19.6 608 50.5 1.99
ESA 18.0 524 50.0 1.56
FIM 17.9 476 48.9 0.50

RLp 16.9 476 42.7 1.53
RLd 16.9 468 42.7 1.40

5.2. Analysis of Decentralized Results

The success of the decentralized RL algorithm suggests several questions: How similar are
the learned policies of the agents to one another and to the policy learned by the parallel
algorithm? Can the results be improved by using a voting scheme? What happens if one
agent’s policy is used to control all of the cars? This section addresses these questions.
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Table 4. Results for down-peak profile with twice as much up traffic.

Algorithm AvgWait SquaredWait SystemTime Percent>60 secs

SECTOR 30.3 1643 59.5 13.50
HUFF 22.8 884 55.3 5.10
DLB 22.6 880 55.8 5.18
LQF 23.5 877 53.5 4.92

BASIC HUFF 23.2 875 54.7 4.94
FIM 20.8 685 53.4 3.10
ESA 20.1 667 52.3 3.12

RLd 18.8 593 45.4 2.40
RLp 18.6 585 45.7 2.49

The simulator was modified to compare the action selections of the four decentralized Q-
network agents as well as the parallel Q-network on every decision by every car. During one
hour of simulated elevator time, therewere a total of 573 decisions required. The four agents
were unanimous on 505 decisions (88 percent), they split 3 to 1 on 47 decisions (8 percent),
and they split evenly on 21 decisions (4 percent). The parallel network agreed with 493 of
the 505 unanimous decisions (98 percent). For some reason, the parallel network tended to
favor the STOP action more than the decentralized networks, although this apparently had
little impact on overall performance. The complete results are listed in Table 5.

Table 5. Amount of agreement between decentralized agents.

Agents Saying Agents Saying Number of Parallel Parallel
STOP CONTINUE Instances Says STOP Says CONT

4 0 389 386 3
3 1 29 27 2
2 2 21 17 4
1 3 18 11 7
0 4 116 9 107

While these results show considerable agreement, there were some situations in which
the agents disagreed. In the next experiment the agents voted on which actions should be
selected for all of the cars. We examined three ways of resolving voting ties: in favor of
STOP (RLs), in favor of CONTINUE (RLc), or randomly (RLr). Table 6 shows the results
of this voting scheme compared to the original decentralized algorithm (RLd). The results
were averaged over 30 hours of simulated elevator time on pure down traffic.
These results show no significant improvement from voting. In the situations where the

agents were evenly split, breaking the ties randomly produced results that were almost
identical to those of the original decentralized algorithm. This suggests that the agents
generally agree on the most important decisions, and disagree only on decisions of little
consequence, i.e., where the Q-values are very similar for the different action choices.
In the next experiment the agent for a single car selected actions for all the cars. RL1 used

the agent for car 1 to control all the cars, RL2 used the agent for car 2, and so on. Table 7
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Table 6. Comparison with several voting schemes.

Algorithm AvgWait SquaredWait SystemTime Percent>60 secs

RLc 15.0 325 41.7 0.09
RLs 14.9 322 41.7 0.10
RLr 14.8 314 41.7 0.12

RLd 14.7 313 41.7 0.07

compares these controllers to the original decentralized algorithm (RLd). The results were
averaged over 30 hours of simulated elevator time on pure down traffic.

Table 7. Letting a single agent control all four cars.

Algorithm AvgWait SquaredWait SystemTime Percent>60 secs

RL1 14.7 315 41.6 0.15
RL2 15.0 324 41.9 0.10
RL3 15.0 333 41.9 0.26
RL4 15.0 324 41.8 0.15

RLd 14.7 313 41.7 0.07

While agent 1 outperformed the other agents, all of the agents performed well relative to
the non-RLcontrollers discussed above. In summary, it appears that all the decentralized and
parallel agents learned very similar policies. The similarity of the learned policies may have
been caused in part by the symmetry of the elevator system and the input representation we
selected, which did not distinguish among the cars. For future work, it would be interesting
to see whether agents with input representations that did distinguish among the cars would
still arrive at similar policies.

5.3. Annealing Schedules

One of the most important factors in the performance of the algorithms is the annealing
schedule used to control the amount of exploration performed by each agent. The slower
the annealing process, the better the final result. This is illustrated in Table 8 and Figure
2, which show the results of one learning run with each of a number of annealing rates.
The temperature T was annealed according to the schedule T = 2.0 ∗ (Factor)h, where h
denotes the number of simulated hours of learning completed. Once again, the results were
measured over 30 hours of simulated elevator time. Although they are somewhat noisy due
to not being averaged over multiple learning runs, the trend is still quite clear.
Each of the schedules that we tested shared the same starting and ending temperatures.

Although annealing can be ended at any time, if the amount of time available for learning
is known in advance, one should select an annealing schedule that covers a full range of
temperatures.
While gradual annealing is important in single-agent RL, it is even more important in

multi-agent RL. The need for an agent to explore now must be balanced with the need
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Table 8. The effect of varying the annealing rate.

Factor Hours AvgWait SquaredWait SystemTime Pct>60 secs

0.992 950 19.3 581 44.7 1.69
0.996 1875 17.6 487 43.2 1.17
0.998 3750 15.8 376 42.0 0.28
0.999 7500 15.3 353 41.8 0.30
0.9995 15000 15.7 361 42.4 0.17
0.99975 30000 15.1 335 41.9 0.12
0.999875 60000 14.7 313 41.7 0.07
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Figure 2. The effect of varying the annealing rate.

for the other agents to learn in a stationary environment. At the beginning of the learning
process, the agents are all extremely inept. With gradual annealing they are all able to raise
their performance levels in parallel. Tesauro (1992, 1994, 1995) notes a slightly different
but related phenomenon in the context of zero-sum games, where learning with self-play
allows an agent to learn with a well-matched opponent during each stage of its development.

5.4. Omniscient Versus On-line Reinforcement Schemes

This section examines the relative performance of the omniscient and on-line reinforcement
schemes described in Section 4.1, given the same network structure, step-size parameter,
and annealing schedule. As shown in Table 9, the omniscient reinforcement scheme led
to slightly better performance than did the on-line reinforcement scheme. This should be
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of little concern regarding the application of RL to a real elevator system since one would
want to let the initial learning take place during simulation in any case, not only because
of the huge amount of experience needed, but also because performance would be poor
during the early stages of learning. For application to a real elevator system, initial learning
could occur from simulated experience, and the networks could be fine-tuned using actual
experience.

Table 9. Omniscient versus on-line reinforcements.

AvgWait SquaredWait SystemTime Pct>60 secs

Omniscient 15.2 332 42.1 0.07
On-line 15.3 342 41.6 0.16

5.5. Levels of Incomplete State Information

If parallel or decentralized RL were to be implemented in a real elevator system, there
would be no problem providing whatever state information was available to all of the
agents. However, in a truly decentralized control situation, this might not be possible. Here
we examine how performance degrades as the amount of state information received by the
agents decreases. We varied the amount of information available to the agents along two
dimensions: information about the hall call buttons; and information about the location,
direction, and status of the other cars.
We experimented with four input representations for the hall call buttons: 1) REAL,

consisting of 18 input units, where two units encode information about each of the nine
down hall buttons (the representation described in Section 4.3 used to obtain the results
reported above); 2) BINARY, consisting of 9 binary input units corresponding to the nine
down hall buttons; 3) QUANTITY, consisting of two input units measuring the number of
hall calls above and below the current decision-making car, and 4) NONE, with no input
units conveying information about the hall buttons.
We experimented with three input representations for the configuration of the other cars:

1) FOOTPRINTS, consisting of 10 input units, where each unit represents one of the 10
floors where the other cars may be located (the representation described in Section 4.3
used to obtain the results reported above); 2) QUANTITY, consisting of 4 input units that
represent the number of upward and downward moving cars above and below the decision-
making car; and 3) NONE, consisting of no input units conveying information about the
configuration of the other cars.
All of the networks also possessed a bias unit that was always activated, 20 hidden units,

and 2 output units (for the STOP and CONTINUE actions). All used the decentralized RL
algorithm, learned over 12000 hours of simulated elevator time using the down-peak profile
and omniscient reinforcement scheme. The temperature T was annealed according to the
schedule T = 2.0 ∗ (.9995)h, where h denotes the number of simulated hours of learning.
The step-size parameter was decreased according to the schedule α = 0.01 ∗ (.99975)h.
The results shown in Table 10 are measured in terms of the average squared passenger

waiting times over 30 hours of simulated elevator time. They should be considered to be
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fairly noisy because they were not averaged over multiple learning runs. Nevertheless, they
show some interesting trends.

Table 10. Average squared wait times with various levels of incomplete state information.

Hall Location of Other Cars
Buttons

Footprints Quantity None
Real 370 428 474
Binary 471 409 553
Quantity 449 390 530
None 1161 778 827

Clearly, information about the hall calls was more important than information about the
configuration of the other cars. In fact, performance was still remarkably good even without
any information about the other cars. (Technically speaking, some information was always
available about the other cars because of the constraint that prevents a car from stopping
to pick up passengers at a floor where another car has already stopped. This constraint
probably helped performance considerably.)
When the hall call information was completely missing, the network weights had an

increased tendency to becomeunstable or growwithout bound and so the step-size parameter
had to be lowered in some cases. For a further discussion of network instability, see
Section 5.7.
The way that information was presented was important. For example, being supplied

with the number of hall calls above and below the decision-making car was more useful
to the networks than the potentially more informative binary button information. It also
appears that information along one dimension is helpful in utilizing information along the
other dimension. For example, the FOOTPRINTS representation made performance much
worse than no car information in the absence of any hall call information. The only time
FOOTPRINTS outperformed the other representations was with the maximum amount of
hall call information.
Overall, the performance was quite good except in the complete absence of hall call

information (which is a significant handicap indeed), and it could be improved further by
slower annealing. It seems reasonable to say that the algorithm degrades gracefully in the
presence of incomplete state information in this problem.
In a final experiment, two binary features were added to the REAL/FOOTPRINTS input

representation. They were activated when the decision-making car was at the highest floor
with a waiting passenger, and the floor with the longest waiting passenger, respectively.
With the addition of these features, the average squared wait time decreased from 370 to
359, so they appear to have some value.

5.6. Practical Issues

One of the greatest difficulties in applying RL to the elevator control problem was finding
the correct temperature and step-size parameters. It was very helpful to start with a scaled-
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down version consisting of just 1 car and 4 floors and a lookup table for the Q-values. This
made it easier to determine rough values for the temperature and step-size schedules.
The importance of focusing the experience of the learner onto the most appropriate areas

of the state space cannot be overstressed (Barto et al., 1995). Learning along simulated
trajectories is an important start, but adding reasonable constraints such as those described
in Section 3.3.3 also helps. Further evidence supporting the importance of focusing is that
given a choice between learning on heavier or lighter traffic than one expects to face during
testing, it is better to learn on the heavier traffic. This gives the system more experience
with long queue lengths, where making the correct decisions is crucial.

5.7. Instability

Theweights of the neural networks can becomeunstable, theirmagnitude increasingwithout
bound. Two particular situations seem to lead to instability. The first occurs when the
learning algorithm makes updates that are too large. This can happen when the step-size
parameter is too large, or when the network inputs are too large (which can happen in
very heavy traffic situations), or both. The second occurs when the network weights have
just been initialized to random values, producing excessively inconsistent Q-values. For
example, while a step-size parameter of 10−2 is suitable for learning by a random initial
network on moderate traffic (700 passengers/hour), it very consistently brings on instability
in heavy traffic (1900 passengers/hour). However, a step-size of 10−3 keeps the network
stable even in heavy traffic. If the network learns using this smaller step-size parameter for
several hundred simulated hours of elevator time, leading to weights that represent a more
consistent set of Q-values, then the parameter can be safely raised back up to 10−2 without
causing instability.

5.8. Linear Networks

One may ask whether nonlinear function approximators such as feedforward sigmoidal
networks are necessary for good performance in this elevator control problem. A test was
run using a linear network that learned using the Least Mean Square algorithm (Widrow &
Stearns, 1985). The linear network had a much greater tendency to be unstable. In order to
keep the weights from growing without bound, the step-size parameter had to be lowered
by several orders of magnitude, from 10−3 to 10−6. After some initial improvement, the
linear network was unable to further reduce the average error in the updates of the Q-values,
resulting in extremely poor performance. This failure of linear networks lends support to
the contention that elevator control is a difficult problem.

6. Discussion

The policies learned by both the parallel and decentralized multi-agent RL architectures
were able to outperform all of the elevator algorithms with which we compared them.
Gradual annealing appeared to be a crucial factor enabling the RL architectures to obtain
these successful policies, which were very similar for the two architectures. Learning was
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effective using both omniscient and on-line reinforcement schemes. The algorithms were
robust, easily generalizing to new situations such as added up traffic. Finally, they degraded
gracefully in the face of decreasing levels of state information. Although the networks
became unstable under certain circumstances, techniques were discussed that prevented
the instabilities in practice. Taken together, these results demonstrate that multi-agent
RL algorithms can be very powerful techniques for addressing very large-scale stochastic
dynamic optimization problems.

A crucial ingredient in the success of multi-agent RL is the careful control of the amount
of exploration performed by each agent. Exploration in this context means trying an action
believed to be suboptimal in order to gather additional information about its potential value.
At the beginning of the learning process, each RL agent chooses actions randomly, without
any knowledge of their relative values, and thus all the agents are extremely inept. However,
in spite of the noise in the reinforcement signal caused by the actions of the other agents,
some actions will begin to appear to be better than others. By gradually annealing (or
lowering) the amount of exploration performed by the agents, these better actions will
be taken with greater frequency. This gradually changes the environment for each of the
agents, and as they continue to explore, they all raise their performance levels in parallel.
Although RL agents in a team face added stochasticity and non-stationarity due to the
changing stochastic policies of the other agents on the team, they display an exceptional
ability to cooperate with one another in learning to maximize their rewards.

There are many areas of research in both elevator group control and general multi-agent
RL that deserve further investigation. Implementing an RL controller in a real elevator
system would require learning on several other traffic profiles, including up-peak and inter-
floor traffic patterns. Additional actions would be needed in order to handle these traffic
patterns. For example, in up-peak traffic it would be useful to have actions to specifically
open and close the doors or to control the dwell time at the lobby. In inter-floor traffic,
unconstrained “up” and “down” actions would be needed for the sake of flexibility. The
cars should also have the ability to “park” at various floors during periods of light traffic.

It would be interesting to try something other than a uniform annealing schedule for the
agents. For example, a coordinated exploration strategy or round-robin type of annealing
might be a way of reducing the noise generated by the other agents. However, such a
coordinated exploration strategy may have a greater tendency to become stuck in sub-
optimal policies.

Theoretical results for sequential multi-agent RL are needed to supplement the results for
non-sequential multi-agent RL described in Section 2. Another area that needs further study
is RL architectures where reinforcement is tailored to individual agents, possibly by using
a hierarchy or some other advanced organizational structure. Such local reinforcement
architectures have the potential to greatly increase the speed of learning, but they will
require much more knowledge on the part of whatever is producing the reinforcement
signals (Barto, 1989). Finally, it is important to find effective methods for allowing the
possibility of explicit communication among the agents.
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7. Conclusions

Multi-agent control systems are often required because of spatial or geographic distribution,
or in situations where centralized information is not available or is not practical. But even
when a distributed approach is not required, multiple agents may still provide an excellent
way of scaling up to approximate solutions for very large problems by streamlining the
search through the space of possible policies.
Multi-agent RL combines some advantages of bottom-up and top-down approaches to

the design of multi-agent systems. It achieves the simplicity of a bottom-up approach by
allowing the use of relatively unsophisticated agents that learn on the basis of their own
experiences. At the same time, RL agents adapt to a top-down global reinforcement signal,
which guides their behavior toward the achievement of complex specific goals. As a result,
systems for complex problems can be created with a minimum of human effort.
RL algorithms can learn from actual or simulated experience, allowing them to focus

computational effort onto regions of state space that are likely to be visited during actual
control. This makes it feasible to apply them to very large-scale problems. If each of the
members of a team of agents employs an RL algorithm, a new collective algorithm emerges
for the group as a whole. This type of collective algorithm allows control policies to be
learned in a decentralized way. Even though RL agents in a team face added stochasticity
and non-stationarity due to the changing stochastic policies of the other agents on the team,
they can learn to cooperate with one another in attempting to maximize their common
rewards.
In order to demonstrate the power of multi-agent RL, we focused on the difficult problem

of elevator group supervisory control. We used a team of RL agents, each of which was
responsible for controlling one elevator car. Results obtained in simulation surpassed the
best of the heuristic elevator control algorithms of which we are aware. Performance was
also robust in the face of decreased levels of state information.
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