
Inverse Reinforcement Learning with Leveraged Gaussian Processes

Kyungjae Lee, Sungjoon Choi, and Songhwai Oh

Abstract— In this paper, we propose a novel inverse reinforce-
ment learning algorithm with leveraged Gaussian processes
that can learn from both positive and negative demonstrations.
While most existing inverse reinforcement learning (IRL) meth-
ods suffer from the lack of information near low reward regions,
the proposed method alleviates this issue by incorporating
(negative) demonstrations of what not to do. To mathemati-
cally formulate negative demonstrations, we introduce a novel
generative model which can generate both positive and negative
demonstrations using a parameter, called proficiency. Moreover,
since we represent a reward function using a leveraged Gaus-
sian process which can model a nonlinear function, the proposed
method can effectively estimate the structure of a nonlinear
reward function.

I. INTRODUCTION

Reinforcement learning (RL) has been widely used to
learn behaviors to perform complex tasks in robotics [1].
RL aims to find the optimal behavior which maximizes the
expected sum of rewards during the execution phase. A
reward function indicates the one step performance measure
about each control at each situation. In order to successfully
learn a desirable behavior, the reward function must be
elaborately designed to express the given task.

However, in some tasks such as driving a car [2], inverted
helicopter flight [3], and socially adaptive path planning
[4], it is difficult to design a proper reward function that
accurately generates the desired behaviors. It is more natural
to learn the desirable behaviors performing such tasks by
imitating expert’s demonstrations. This problem is often
formulated as inverse reinforcement learning (IRL) [5]. IRL
aims to find the reward function which best explains demon-
strations by experts. A key assumption of IRL is that experts
follow the optimal policy induced by the underlying reward
function, hence, the main idea of solving IRL is to find a
reward function that makes experts’ behaviors (near) optimal.
The reward function learned by IRL is further used to obtain
the desired behaviors by solving the usual reinforcement
learning problem.

Since demonstrations of experts are often distributed near
high reward regions, the resulting reward function learned
by IRL cannot approximate low reward regions accurately.
This phenomenon was intensively investigated in [6], [7].
The authors argued that the lack of demonstrations of what

This work was supported by the Institute for Information & Com-
munications Technology Promotion (IITP) grant funded by the Korea
government (MSIP) (B0101-16-0307, Basic Software Research in Human-
Level Lifelong Machine Learning).

K. Lee, S. Choi, and S. Oh are with the Department of Elec-
trical and Computer Engineering and ASRI, Seoul National Univer-
sity, Seoul 151-744, Korea (e-mail: {kyungjae.lee, sungjoon.choi, songh-
wai.oh}@cpslab.snu.ac.kr).

to do in the critical situations will lead to unsatisfactory per-
formance or fatal failure. For example, when learning how to
drive, an autonomous vehicle occasionally encounters a risky
situation, e.g., heading towards the side of the road. In order
to avoid a catastrophic situation, the autonomous vehicle
should recover back to the center of the road. However, such
recovery behavior rarely appears in demonstrations from a
good driver. In [6], Ross and Bargnell tackled this problem
via continuous interaction with experts. However, it is not
practical to rely on experts frequently.

To handle lack of demonstrations near low reward regions,
we incorporate demonstrations about both what to do and
what not to do. As demonstrations about what not to do
will be often distributed near low reward regions, we can
obtain information to avoid catastrophic failures from such
demonstrations.

In this paper, we propose a novel inverse reinforcement
learning algorithm with leveraged Gaussian processes that
can incorporate examples of both what to do (positive
demonstrations) and what not to do (negative demonstra-
tions). We model a reward function using a leveraged Gaus-
sian process (LGP) [8], which is capable of modeling a com-
plex nonlinear function. To mathematically define positive
and negative demonstrations, we introduce a novel generative
model of a demonstrator, which can generate both positive
and negative demonstrations using the same reward function.
Our generative model incorporates an additional parameter,
called proficiency, which can vary continuously from −1 to
+1, such that a positive (or, respectively, negative) profi-
ciency indicates a positive (or, respectively, negative) demon-
stration. Hence, in our problem, a demonstration consists of
its proficiency value as well as a sequence of state-action
pairs. The proposed IRL method finds a reward function
such that positive demonstrations have higher values and
negative demonstrations have lower values. We extensively
validate the performance of the proposed method in terms
of accuracy and sample efficiencies. In simulations, the
proposed method is more efficient and can approximate the
underlying reward function more accurately using a fewer
number of demonstrations than existing methods. Moreover,
it shows that the use of negative demonstrations is better than
simply using positive demonstrations alone, illustrating the
benefits of using negative examples.

The remainder of this paper is structured as follows. In
Section II, related work is discussed. In Section III, the
Markov decision process (MDP), Gaussian process IRL, and
LGP are introduced. In Section IV, the new expert model and
the proposed learning algorithm are explained. A simulation
study is discussed in Section V.

Pos Demo Pos and Neg Demo
Margin based model [2], [5], [9] [10]
Probabilistic model [11]–[14] [15], Ours

TABLE I: Classification of IRL algorithms

II. RELATED WORK

Recently, a number of IRL methods have been proposed.
They can be separated into four different categories based on
two criteria. The first criterion is the formulation of problem:
margin based or probabilistic model based. The second is the
capability of considering both positive and negative demon-
strations or not. Many existing algorithms consider only
positive demonstrations and a handful of approaches utilize
both types of demonstrations. The classification of state-
of-the-art IRL algorithms, including ours, is summarized in
Table I.

A margin based method maximizes the margin between
the value of the expert’s policy and all other policies [2],
[5], [9]. The margin based algorithms generally assume that
the reward function is a linear combination of features. In
[2], Abbeel and Ng proposed an apprenticeship learning (AL)
algorithm, which maximizes the margin between the expert’s
policy and randomly sampled policies. In [9], Ratliff et al.
proposed the maximum margin planning (MMP) algorithm,
where Bellman-flow constraints are utilized to consider the
margin between the experts’ policy and all other policies.
MMP was mainly motivated from the structured support
vector machine (SVM) [16].

A probabilistic model based method first defines a prob-
ability distribution of expert’s demonstrations and optimize
the parameter of the distribution [11]–[14]. To define the
probability on a trajectory of state-action pairs, many prob-
abilistic IRL algorithms utilize a stochastic policy. The
stochastic policy model was first utilized in [11], [12] in
order to handle the inconsistency of expert’s policy. Ziebart
et al. [11] proposed maximum entropy inverse reinforcement
learning (MaxEnt) using the principle of maximum entropy
to handle ambiguity issues of IRL, where the efficient way
to compute the gradient of the likelihood of demonstra-
tions is also proposed. Ramachandran et al. [12] proposed
Bayesian inverse reinforcement learning (BIRL), where the
Bayesian probabilistic model over demonstrations is defined
and solved using a Metropolis-Hastings (MH) method. We
also note that [13], [14] are variants based on [11], [12].
Gaussian process inverse reinforcement learning (GPIRL)
was proposed in [13], where the reward function is rep-
resented as a sparse Gaussian process, which can express
a nonlinear reward function in a feature space. Choi et al.
[14] proposed a nonparametric Bayesian feature constructing
method for IRL (BNP-FIRL) to identify useful composite
features for learning a reward function.

Despite successful advances in IRL, the demonstration
acquisition is still an open issue. Generating demonstrations
by experts can be often an expensive process. To handle
this problem, [10], [15] are proposed to utilize inexpert

demonstrations. In [10], unlabeled demonstrations are con-
sidered, for which we do not know whether they are actually
generated by an expert or not. [10] proposed semi-supervised
apprenticeship learning (SSAL), which is an extension of [2]

While SSAL [10] mainly focused on classifying unla-
beled demonstrations, [15] focused more on utilizing failed
demonstrations. In [15], Shiarlis et al. proposed inverse
reinforcement learning from failure (IRLfF). IRLfF refor-
mulated MaxEnt [11] with new constraints that require the
learned policy to maximally differ from failed demonstra-
tions. However, failed demonstrations do not exactly provide
the information about what not to do, since the failed
demonstration may contain some level of desirable behavior
while its outcome is failure. In our paper, we focus on
representing negative demonstrations, i.e., what not to do,
using an additional parameter called proficiency.

Recently, a score-based IRL framework has also been
proposed [17], [18]. In this framework, the score is manually
assigned by the expert and it is defined as the discounted
sum of rewards or value of a demonstration. Consequently,
the expert should come up with the rewards of every states
the demonstration traversed, whereas our proposed method
requires a single scalar indicating the proficiency of the
demonstrator. Moreover, both approaches model the reward
structure as a linear function of features while our model is
nonlinear.

III. BACKGROUND

A. Markov Decision Processes and a Stochastic Policy

A common method to formulate a skill learning problem
is a Markov decision process (MDP). An MDP can be
characterized by a tuple M = {S,F,A,T, γ, r}, where S is
the state space, F is the corresponding feature space, A is the
action space, T(s′|s, a) is the transition probability from s ∈
S to s′ ∈ S by taking an action a ∈ A, γ is a discount factor,
and r is the reward function. For inverse reinforcement learn-
ing (IRL), the problem is expressed as M/r with experts’
demonstrations D = {ζ1, . . . , ζN}, where ζi is a sequence of
state-action pairs, i.e., ζi = {(si,0, ai,0), . . . , (si,T , ai,T)}. In
IRL, it is a general assumption that the expert always obeys
the optimal policy. In practice, however, demonstrations from
experts can be inconsistent with each other. To handle this
issue, a stochastic policy model has been widely used in
IRL problems [11]–[13]. In this model, the probability of
choosing action a at state s is exponentially proportional
to the state-action value function Q(s, a) and the resulting
stochastic policy function is defined as follows:

π(a|s) =
eQ(s,a)∑
a′ e

Q(s,a′)
.

The stochastic policy is computed by the soft Bellman
equation, which was proposed in [19].

Under this policy, the log likelihood of demonstration ζ
under r can be written as

logP (ζ|r) ∝
T∑
t=0

[Q(st, at)− V (st)] , (1)

where V (·) is a soft value function, i.e., V (s) =
log
∑
a′ e

Q(s,a′).

B. Gaussian Process Inverse Reinforcement Learning

Gaussian process inverse reinforcement learning (GPIRL)
was proposed in [13]. GPIRL uses the stochastic policy
model and represents the reward function as a Gaussian
process, where its structure is determined by its kernel
function and hyperparameters θ. In order to apply Gaussian
process regression to estimate a reward function, training
outputs u ⊂ R and corresponding feature inputs Xu ⊂ F
are required. But, for IRL, training outputs do not exist since
we only observe actions, not the reward outputs. Due to this
reason, the true training outputs u are also estimated during
the learning phase.

The most likely values of u and θ can be found by
maximizing the following likelihood given demonstrations:

P (u, θ|Xu,D) ∝ P (D,u, θ|Xu)

=

[∫
r

P (D|r)P (r|u,Xu, θ)dr

]
P (u|Xu, θ)P (θ|Xu),

(2)
where D is a set of demonstrations, i.e., D = {ζ}, r is
a reward function of entire feature space F, P (D|r) is the
likelihood of demonstrations which can be computed using
(1), P (r|u,Xu, θ) is the GP posterior of the reward function,
P (u|Xu, θ) is the prior probability of GP, and P (θ|Xu) is
the predefined prior for hyperparameters. P (u|Xu, θ) has
the Gaussian distribution with a covariance matrix, whose
entries are given by the following squared exponential (SE)
kernel function1:

kse(xi, xj ; θ) = β exp

(
−1

2
(xi − xj)TΛ(xi − xj)

)
,

where θ = {β,Λ}, β is the gain of the SE kernel, and Λ is
a diagonal matrix of length parameters. P (r|u,Xu, θ) also
has the Gaussian distribution. However, the complexity of
P (D|r) makes the integral intractable. In order to handle
the integral in (2), the approximation method [20] has been
used. One approximation is to assume that r is deterministic,
which means the predictive variance is zero. Under this
assumption, the integral disappears and the reward function
r(x∗) at an unseen input x∗ becomes k∗uK

−1
uuu, where

[k∗u]i = kse(x∗,Xui), Xui is the ith element of Xu, and
[Kuu]ij = kse(Xui,Xuj). The resulting likelihood can be
written as:

P (D,u, θ|Xu) = P (D|r = KFuK
−1
uuu)P (u|Xu, θ)P (θ|Xu),

where [KFu]ij = kse(Fi,Xuj) and Fi is the ith element
of the feature space F. Once the likelihood is optimized,
the approximated reward can be used to recover the expert’s
policy on the entire state space.

1Note that other kernel functions can be used as well.

C. Leveraged Gaussian Process

In [8], leveraged Gaussian processes (LGP) are proposed
to use both positive and negative training samples for Gaus-
sian process regression (GPR). A leveraged kernel function
makes the prediction result of GPR close to positive samples
and drift away from negative samples. Each training sample
has its leverage value varying from −1 to +1, where −1
indicates a fully negative sample and +1 indicates a fully
positive sample. A smooth leveraged kernel function pro-
posed in [21] is defined as follows.

k(xi, li, xj , lj ; θ) = cos
(π

2
|li − lj |

)
kse(xi, xj ; θ), (3)

where xi and xj are inputs, li and lj are leverage values of
the ith and jth inputs, respectively.

A leveraged Gaussian process (LGP) can be used to
express multiple correlated Gaussian processes with the
same covariance structure by defining cross-covariance func-
tion of two Gaussian processes f and g as (3). We note
that cos

(
π
2 |li − lj |

)
controls the correlation between two

Gaussian processes. For learning hyperparameters in LGP
regression, derivatives of a leveraged kernel function with
respect to hyperparameters are required and they can be
computed as follows:

∂k(xi, xj , li, lj)

∂β
=
k(xi, xj , li, lj)

β
∂k(xi, xj , li, lj)

∂λk
= −1

2
(xi,k − xj,k)2k(xi, xj , li, lj),

(4)

where λk indicates the kth diagonal element of Λ and xi,k
is the kth element of xi.

IV. INVERSE REINFORCEMENT LEARNING WITH
LEVERAGED GAUSSIAN PROCESSES

A. Benefits of Negative Demonstrations

Many existing IRL algorithms focus on using demonstra-
tions of what to do. However, as mentioned in [6], the fact
that experts rarely encounter fatal situations leads to the lack
of information about how to overcome in a fatal situation. To
handle this problem, we provide the information about what
not to do using a negative demonstrator. Demonstrations
from experts (positive demonstration) are mostly distributed
near the high reward regions. However, we model a negative
demonstrator having an inverted reward function compared
to an expert. Hence, negative demonstrations from a negative
demonstrator is more likely to be generated near low reward
regions.

For example, consider the objectworld experiment [13].
Figure 1 shows examples of positive and negative demon-
strations and results of IRL algorithms. In an N × N
objectworld, colored objects are randomly populated where
two outer colors (red and blue) exist and the state is the
cell in the map. Possible actions are moving towards four
adjacent grid cells or staying at the current cell. The reward
function is defined such that the cell near both red and
blue colored objects has a reward of +1, the cell near only
blue colored objects has a reward of −1, and other cells

(a) (b)

(c) (d)

Fig. 1: A 16 × 16 objectworld. Colored circles are objects
and the brighter the grid color is, the higher the reward
is. Blue arrows are positive demonstrations and red ar-
rows are negative demonstrations. (a) Examples of positive
demonstrations. (b) Examples of negative examples. (c) The
reward function reconstructed by GPIPL [13]. (d) The reward
function reconstructed by the proposed method.

have a reward of 0. (More details about the objectworld
are discussed in Section V.) In Figure 1(a), most of pos-
itive demonstrations are rarely distributed near low reward
regions. Conversely, in Figure 1(b), negative demonstrations
are more likely to be distributed near low reward regions
and can provide more information about what not to do. In
Figure 1(c) and 1(d), reward reconstruction results of GPIRL
[13] and the proposed method are shown, respectively. The
result from the proposed method, which uses both positive
and negative demonstrations, is more accurate than GPIRL,
which uses the same number of demonstrations (but only
positive demonstrations). We can draw the conclusion that
negative demonstrations can provide information about low
reward regions and we can estimate the reward function more
precisely using both positive and negative demonstrations.

B. Demonstrator Modeling

Before presenting the problem formulation used in this
paper, we describe the model of a demonstrator with mul-
tiple levels of proficiencies. The main contribution of the
proposed model is that it allows the use of negative and
positive demonstrations in a single framework. A graphical
representation of the proposed demonstrator model is shown
in Figure 2. The proficiency of a demonstrator is represented
as the leverage parameter in an LGP and we will refer to the
leverage parameter as the proficiency. The proficiency of an
expert is +1. On the other hand, a fully negative demonstra-
tor has the proficiency of −1, i.e., she optimizes a reward

Fig. 2: A graphical representation of the proposed demon-
strator model with multiple proficiencies, where r is the true
reward function (expert’s reward) with proficiency +1, M is
the number of demonstrators, Ni is the number of demon-
strations from the ith demonstrator, li is the proficiency of
the ith demonstrator, ri is the reward function of the ith
demonstrator, and ζij is the jth demonstration from the ith
demonstrator.

function which is inverted from the expert’s reward function.
A demonstrator with the positive or negative proficiency
will be referred to as a positive or negative demonstrator,
respectively. Each demonstrator has a different version of
the reward function depending on its proficiency, but it is
correlated with the original reward function of the expert.

C. Problem Formulation

We consider the problem of finding the reward function
from given demonstrations and proficiencies and it can be
formulated as follows:

maximize
u,θ

logP (u, θ|Xu, D̄), (5)

where the reward function is parameterized by Xu and u
indicating a subset of features and corresponding reward
values, respectively, and D̄ = {li, {ζij}Ni

j }Mi .
Here, we maximize the probability of reward outputs and

hyperparameters given inputs, demonstrations, and proficien-
cies. We can decompose the objective function into four parts
as follows.

P (u,θ|Xu, D̄) ∝ P (D̄,u, θ|Xu)

∝
M∏
i=1

Ni∏
j=1

∫
ri

P (ζij |ri)P (ri|li,u,Xu, θ)P (u|Xu, θ)P (θ|Xu),

where li and ri are the proficiency and reward of the ith
demonstrator, respectively, and P (ri|li,u,Xu, θ) is the LGP
posterior. Since the integral cannot be analytically computed,
we utilize the deterministic sparse Gaussian process approx-
imation, similar to [13], [20]. Then, the integration can be
avoided and the resulting probability can be written as below.

M∏
i=1

Ni∏
j=1

P (ζij |ri = KFuK
−1
uuu)P (u|Xu, θ)P (θ|Xu),

where the kernel matrices Kuu and KFu are computed by
leveraged kernel function (3) using the proficiency li and
the expert’s proficiency +1. The equation consists of three
parts: the likelihood of demonstrations, the LGP marginal
likelihood of outputs u, and the prior on hyperparameters θ.

Finally, (5) becomes

max
u,θ

M∑
i=1

Ni∑
j=1

logP (ζij |ri)︸ ︷︷ ︸
IRL likelihood

+ logP (u|Xu, θ)︸ ︷︷ ︸
LGP marginal likelihood

+ logP (θ|Xu)︸ ︷︷ ︸
prior

,

(6)
where logP (ζij |ri) is given in (1). The other two terms can
be computed as

logP (u|Xu, θ) = −1

2
uTKuu

−1u− 1

2
log |Kuu| −

n

2
log 2π

logP (θ|Xu) = −1

2
tr(Kuu

−2)−
∑
k

log(λk + 1),

where λk is the kth diagonal entry of Λ. The LGP marginal
likelihood and the prior on hyperparameters have an effect
of regularization [13]. The IRL likelihood in (6) allows us to
incorporate multiple proficiency information for learning an
expert’s reward function. We optimize the objective function
using a gradient ascent method. The derivatives of each part
in (6) can be computed by applying the chain rule and using
the kernel derivatives in (4).

V. SIMULATIONS AND EXPERIMENTS

In this section, we evaluate the performance of the pro-
posed inverse reinforcement learning algorithm by compar-
ing against existing methods. The proposed method (LIRL)
is compared with IRL algorithms using only positive demon-
strations: AL [2], MMP [9], BIRL [12], MaxEnt [11],
GPIRL [13], and BNP-FIRL [14]. We also compare with
SSAL [10], a relatively recent algorithm, which uses both
positive and negative demonstrations. The original SSAL is
a semi-supervised IRL method which utilizes both labeled
and unlabeled demonstrations simultaneously by clustering
unlabeled demonstrations. However, in our simulation, we
treat SSAL as supervised AL (SAL), which maximizes the
margin between positive and negative demonstrations by
providing fully labeled demonstrations. We also implement a
supervised version of MMP (SMMP) with a new constraint,
which enforces the resulting value function to be bigger than
that of negative demonstrations in a max-margin framework.

To demonstrate the benefit of using negative demonstra-
tions, we have prepared two types of demonstrations: positive
and negative. A positive demonstration is sampled from
the optimal policy with the proficiency of +1. A negative
demonstration is sampled from the policy, which optimizes
the inverted reward function of the original reward function
and its proficiency is −1. The performance of each algorithm
is evaluated using the expected value difference (EVD),
which is the difference between the optimal value and the
value obtained by following the policy learned by an IRL
algorithm.

We validated the performance of IRL methods using the
objectworld experiment [13], where the state and action
space consist of an N × N grid map and five actions (up,
down, left, right, or staying), respectively. Given an action,
an agent successfully performs the action with probability
of 0.7 or, otherwise, makes a random movement. Inside the
grid map, objects with random colors are randomly deployed

100 200 300 400 500 600
examples

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

ex
pe

ct
ed

 v
al

ue
 d

iff
er

en
ce

LIRL (30%)
GPIRL

(a)

100 200 300 400 500 600

examples

10

20

30

40

ex
pe

ct
ed

 v
al

ue
 d

iff
er

en
ce SMMP (10%)

SMMP (30%)
SMMP (50%)
MMP
SAL (10%)
SAL (30%)
SAL (50%)
AL

(b)

Fig. 3: Average expected value differences of different IRL
algorithms from the 32×32 objectworld experiment with two
colors. (a) Results of LIRL with 30% mixed demonstrations
and GPIRL. (b) Results of SMMP, SAL, MMP and AL.

where each object has an inner and outer colors. Both inner
and outer colors are selected from C ≥ 2 distinct colors.

The reward function is defined as follows:

r(s) =

1, if d1(s) < 3 ∧ d2(s) < 2

−2, if d1(s) < 3 ∧ d2(s) ≥ 2

0, otherwise,

where d1(s) and d2(s) are the Euclidean distances from
state s to the nearest object whose outer color is c1 and
c2, respectively. Intuitively speaking, if the state is located
near both c1 and c2 outer colored objects, the agent gets a
positive reward. But if the agent is near only c1 outer colored
objects, it gets a negative reward. The state is represented
using a binary feature φ(s) [13], where

φki (s)j =

{
1, if dki (s) ≤ j
0, if dki (s) > j,

for i = 1, . . . , C, j = 1, . . . , N , and k = 1, 2 where
dki (s) indicates the Euclidean distance from state s to the
nearest object whose inner (k = 1) or outer (k = 2) color
is ci. Hence, by combining inner and outer colors with C
colors and N distance thresholds, the dimension of a feature
becomes 2CN . The reason why binary feature is utilized
is that some algorithms [14], [22] only work with binary
features. In our simulations, we set N = 32 and C = 2.

We have prepared several sets of demonstrations under
three different ratios of the number of negative demon-
strations to the number of all demonstrations: 10%, 30%
and 50%. Algorithms which can handle both positive and
negative demonstrations are provided with three different

Algorithms Sample Size
10 20 40 80 160 320 640

LIRL (10%) 0.42 0.3 0.20 0.24 0.12 0.16 0.11
LIRL (30%) 0.48 0.34 0.32 0.19 0.12 0.15 0.08
LIRL (50%) 0.79 0.36 0.17 0.43 0.23 0.08 0.13
SMMP (10%) 39.62 18.53 18.60 19.79 17.45 18.34 16.76
SMMP (30%) 24.35 18.51 16.50 17.51 17.04 17.25 16.57
SMMP (50%) 19.59 14.09 17.86 17.68 16.91 16.88 16.68
SAL (10%) 33.00 30.69 34.28 22.62 32.86 25.79 26.95
SAL (30%) 35.61 28.17 30.10 23.70 24.61 24.01 25.04
SAL (50%) 32.49 31.40 30.08 24.04 25.38 28.73 26.54
BIRL 14.72 15.37 15.25 13.26 12.52 12.48 12.91
GPIRL 0.66 0.50 0.45 0.29 0.18 0.17 0.08
BNP-FIRL 10.76 10.43 9.99 9.74 10.19 10.17 10.27
MaxEnt 18.33 15.76 15.68 14.29 13.79 13.50 13.70
MMP 33.72 34.20 33.15 32.61 32.57 32.92 32.63
AL 32.20 32.69 34.16 31.63 31.17 32.70 33.18

TABLE II: Results from the 32×32 objectworld experiment.
The average EVDs from eight independent runs are shown.
The best performance is marked in bold. The percentage
value inside parentheses is the mixing ratio of the number of
negative demonstrations to the number of total demonstra-
tions.

sets of mixed demonstrations. Algorithms using only pos-
itive demonstrations are provided with the same number of
positive demonstrations.

The average EVDs of different algorithms from eight
independent runs are shown in Table II and Figure 3.
Since the proposed method (LIRL) and GPIRL constantly
outperforms other methods, results from two algorithms are
shown in Figure 3(a). LIRL shows better performance than
GPIRL given the same number of demonstrations. Moreover,
the average EVD of LIRL with 160 mixed demonstrations is
better than that of GPIRL with 320 positive demonstrations.
Figure 3(b) shows the benefits of using negative examples
when the technique is applied to other methods. SMMP
and SAL, which are extensions of MMP and AL with both
positive and negative demonstrations, perform better than
MMP and AL. This result empirically shows that the use of
negative demonstrations can enhance performance of inverse
reinforcement learning. The overall results are shown in
Table II.

VI. CONCLUSION

In this paper, a new inverse reinforcement learning algo-
rithm is proposed. The proposed algorithm uses a leveraged
Gaussian process to model a nonlinear reward function and
can learn from both positive and negative demonstrations.
We have also introduced a novel demonstrator model for
modeling demonstrations with different proficiencies. While
many existing IRL methods assume that demonstrations are
generated from experts, negative demonstrations are utilized
by using our demonstrator model to learn expert’s reward
function. To the best of our knowledge, the proposed method
is the first algorithm which can learn a nonlinear reward
function using both positive and negative demonstrations. In
simulation, the proposed method outperforms existing IRL
algorithms. Our experimental results also demonstrate the
benefit of using negative demonstrations in inverse reinforce-
ment learning.

REFERENCES

[1] J. Kober, J. A. Bagnell, and J. Peters, “Reinforcement learning
in robotics: A survey,” International Journal of Robotics Research,
vol. 32, no. 11, pp. 1238–1274, 2013.

[2] P. Abbeel and A. Y. Ng, “Apprenticeship learning via inverse rein-
forcement learning,” in Proc. of the 21st International Conference on
Machine learning, July 2004.

[3] P. Abbeel, A. Coates, and A. Y. Ng, “Autonomous helicopter aerobatics
through apprenticeship learning,” International Journal of Robotics
Research, vol. 29, no. 13, pp. 1608–1639, 2010.

[4] B. Kim and J. Pineau, “Socially adaptive path planning in human envi-
ronments using inverse reinforcement learning,” International Journal
of Social Robotics, vol. 8, no. 1, pp. 51–66, January 2015.

[5] A. Y. Ng and S. Russell, “Algorithms for inverse reinforcement
learning.” in Proc. of the 17th International Conference on Machine
Learning, June 2000.

[6] S. Ross and D. Bagnell, “Efficient reductions for imitation learning,”
in Proc. of the 13rd International Conference on Artificial Intelligence
and Statistics. JMLR.org, may 2010.

[7] S. Ross, “Interactive learning for sequential decisions and predictions,”
Ph.D. dissertation, Carnegie Mellon University, 2013.

[8] S. Choi, E. Kim, K. Lee, and S. Oh, “Leveraged non-stationary
gaussian process regression for autonomous robot navigation,” in Proc.
of the IEEE International Conference on Robotics and Automation
(ICRA). IEEE, May 2015.

[9] N. D. Ratliff, J. A. Bagnell, and M. Zinkevich, “Maximum margin
planning,” in Proc. of the 23rd International Conference on Machine
learning, June 2006.

[10] M. Valko, M. Ghavamzadeh, and A. Lazaric, “Semi-supervised ap-
prenticeship learning,” in Proc. of the Tenth European Workshop on
Reinforcement Learning. JMLR.org, June 2012.

[11] B. D. Ziebart, A. L. Maas, J. A. Bagnell, and A. K. Dey, “Maximum
entropy inverse reinforcement learning,” in Proc. of the 23rd AAAI
Conference on Artificial Intelligence. AAAI Press, July 2008.

[12] D. Ramachandran and E. Amir, “Bayesian inverse reinforcement
learning,” in Proceedings of the 20th International Joint Conference
on Artificial Intelligence, January 2007.

[13] S. Levine, Z. Popovic, and V. Koltun, “Nonlinear inverse reinforcement
learning with gaussian processes,” in Advances in Neural Information
Processing Systems 24. Curran Associates, Inc., December 2011.

[14] J. Choi and K. Kim, “Bayesian nonparametric feature construction
for inverse reinforcement learning,” in Proceedings of the 23rd Inter-
national Joint Conference on Artificial Intelligence. IJCAI/AAAI,
August 2013.

[15] K. Shiarlis, J. Messias, M. van Someren, and S. Whiteson, “Inverse
reinforcement learning from failure,” in RSS 2015: Proc. of the 2015
Robotics: Science and Systems Conference, Workshop on Learning
from Demonstration, July 2015.

[16] B. Taskar, V. Chatalbashev, D. Koller, and C. Guestrin, “Learning
structured prediction models: A large margin approach,” in Proc. of
the 22nd International Conference on Machine learning, August 2005.

[17] L. E. Asri, B. Piot, M. Geist, R. Laroche, and O. Pietquin, “Score-
based inverse reinforcement learning,” in Proc. of the 2016 Inter-
national Conference on Autonomous Agents & Multiagent Systems
(AAMAS). AMMAS, 2016, pp. 457–465.

[18] B. Burchfiel, C. Tomasi, and R. Parr, “Distance minimization for
reward learning from scored trajectories,” in Proc. of the 30th AAAI
Conference on Artificial Intelligence. AAAI Press, February 2016.

[19] B. D. Ziebart, “Modeling purposeful adaptive behavior with the
principle of maximum causal entropy,” Ph.D. dissertation, Carnegie
Mellon University, 2010.

[20] J. Quiñonero-Candela and C. E. Rasmussen, “A unifying view of
sparse approximate gaussian process regression,” Journal of Machine
Learning Research, vol. 6, no. 13, pp. 1939–1959, 2005.

[21] S. Choi, K. Lee, and S. Oh, “Robust learning from demonstration using
leveraged gaussian processes and sparse constrained opimization,”
in Proc. of the IEEE International Conference on Robotics and
Automation (ICRA). IEEE, May 2016.

[22] S. Levine, Z. Popovic, and V. Koltun, “Feature construction for
inverse reinforcement learning,” in Advances in Neural Information
Processing Systems 23, December 2010.

